Technical Document 2984
September 1997

CMS-2 to Ada
Translator
Evaluation Final
Report

Ron Iwamiya
Hans Mumm
Bob Ollerton
Bryan Riegle
NRaD

Currie Colket
SPAWAR

Approved for public release; distribution is unlimited.

Naval Command, Control and Ocean Surveillance Center
RDT&E Division, San Diego, CA 92152-5001

EXECUTIVE SUMMARY
OBJECTIVE

The objective of this evaluation was to determine the maturity of the CMS-2 to Ada translators and
associated tools, to determine the capabilities of these translators, and to provide information to CMS-2
project managers to assist them in the evaluation of costs and risks of translating CMS-2 to Ada. The
evaluation was conducted by NRaD with funding from the Office of Naval Research.

RESULTS

This report contains the results of an in-depth evaluation of three CMS-2 to Ada translators. The
translators evaluated were developed by the Johns Hopkins University Applied Physics Laboratory,
Computer Command and Control Company, and Computer Sciences Corporation. The evaluation was
done in three phases: Quick Look, Stress Testing, and Reengineer Until Ada Code Executes Correctly.
Thereport contains a description of the evaluation process, the detailed results of the three phases of the
evaluation, lessons learned, recommendations, an annotated bibliography, a description of relevant
translation analysis tools, and an explanation of the metrics collected. Metrics collected included person-
hours spent in all aspects of the evaluation, McCabe and Halstead metrics, source lines of code count,
conformance of Ada source code to Software Productivity Consortium Guidelines, and metrics that
measure the difficulty of conversion. Six projects contributed CMS-2 source code. Source code analysis
tools were used to examine the quality of the CM S-2 code and corresponding Ada produced by the
trandators.

RECOMMENDATIONS
Some of the recommendations contained in this report are:

Recommendations to CM S-2 project managers when considering translation
Do not translate unless expertiseis available
If seriously considering translation, do it soon
Analyze CM S-2 code for suitability for translation
Recommendations to the Navy for advancing translator technology
Before investing resources in improving CM S-2 to Ada translators, managers of deployed CMS-2
systems should be polled to find out their plans regarding translation
Support development of Ada quality improvement tools
Recommendations to translator vendors
Minimize global interfaces/declarations
Avoid use of nonstandard or proprietary math libraries
Produce portable Ada code
Recommendations to reengineering tool vendors
Deveop Ada quality improvement tools that remove GO TO statements, remove dead code,
convert global objectsto local objects, and perform automated information hiding

Contents

1. INTRODUCTION ..ottt 1-1
BACKGROUND ...t eeee e eee e eee e ee e e ses e ee e see e ses e see e eeseeee e 1-1
PURPOSE OF THE EVALUATION AND KEY ISSUESoivemieeeeeeesseeeeeeeeeseeesseeessseend 1-2
USERS OF THE RESULTS......eoeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeseeeseseeeeesseeeseseeseeeeese s sese e 1-3
PURPOSE OF THIS REPORTcoveoieeeeeeeeeeeeeeeeeeeeeeseeeseeeeseesseeeseseeseeeeese e ssee s 1-3
CONTENTS OF REPORTccooeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeese s eese s es e es e sesese 1-4

2 . OVERVIEW OF THE TRANSLATOR EVALUATION PROCESS.......c..ccoovvvviureenas 2-1
TRANSLATOR EVALUATIONovcoeeeeeeeeeeeeeeseeeeseeeeeeeeeeeeeeseee e eeeeeseeeseeeeseee s ees e 2-1

3. SUMMARY OF TRANSLATOR/TRANSLATION RESULTS ..o 3-1
TRANSLATOR PROFILESoveoeeeeeeeeeeeeeeeeeseseseeeee e eseeeeeee e eeeeeeeeee e seeeeese s 3-1
CONCLUSIONS.......ceeeeeeeeeeee e eeeee e e e e ee e s e s e eee e ee e eeee 3-1

4 . LESSONS LEARNED AND OPINIONSouieeeieeeeeeseeeeeeeee e 4-1
LESSONS LEARNED........veoeeeeeeeeeeeeeeeeeeseeeseeeeeeeeeeeeeeseeeseseeeseeseseeses e seeeeeseees e seseend 4-1
OPINIONS ...ttt e e e ee e s s e eee e ee e eeee 4-3

5 . RECOMMENDATIONScoeeteeeeeeeeeeeeeeee e eee e e et ee et eee e s e 5-1
RECOMMENDATIONS TO CMS-2 PROJECT MANAGERS WHEN CONSIDERING
TRANSLATION ... eeeeeeeee e ee e eee e s e ee e ee e e s ee e ee e eee e ees e eee e eee e ees e eeseeeee 5-1
RECOMMENDATIONS TO PROJECT MANAGERS AFTER DECIDING TO USE
TRANSLATOR TECHNOLOGYooeeeeeeeeereeeeeeeseeeeeeeeeeeseeeeeeeeeeeeseeeeseeeeseeeesseeeeese s 5-3
RECOMMENDATIONS TO THE NAVY FOR ADVANCING TRANSLATOR
TECHNOLOGY ... eeee e ee e ee e e e ee e es e see e e e e eee e see e ees s 5-4
RECOMMENDATIONS TO TRANSLATOR VENDORSoveieeeeeeseeeeeeeeeesseesseeessseend 5-7
ALL VENDORS ...t eeee e s e s ees e ee e eeeeees e ee e e e eee e see e eese s 5-7
AAPL ettt ettt 5-8
(010102 oSNNS TSRO 5-9
RECOMMENDATIONS TO REENGINEERING TOOL VENDORSovveereerereenne.. 5-11
SUGGESTED TRANSLATION STEPS........cvoieeeeeeeeeeeeseeeeeeeeeeseeseeeeeeseesseeeseseseeseseens 5-12

6. REFERENGCESo

7 . ANNOTATED BIBLIOGRAPHY ..o

TRANSLATING INTO ADA

OTHER REENGINEERING PAPERS ...

APPENDIX A : RESULTS OF QUICK LOOK INSPECTIONcccuvviiiiiiiiiiiiieiiiiinn, A-1

QA9 SELECTED AS SAMPLE ... A-1
OVERVIEW OF STEPS ...t A-2
COMPILATION RESULTS ...ttt A-2
SOURCE LINES OF CODE COMPARISONS.......oooiiiiiieeireee e A-14
HALSTEAD METRICS ...ttt e e annne e e A-14
MCCABE CYCLOMATIC COMPLEXITY METRIC ... A-14
CONFORMANCE TO SOFTWARE PRODUCTIVITY CONSORTIUM GUIDELINES .. A-22
CONCLUSIONS ...t e e s e e e s e e e e A-27
APPENDIX B : RESULTS OF STRESS TESTINGciiiiiiiiiiiiii e B-1
TE ST CASES ... et s e e s et e e e e e e B-1
MTASS STRESS TESTING ..ottt B-1
CONCEPTUAL DIFFERENCES AMONG TRANSLATORScoooiieeee e B-2
BENEFITS OF STRESS TESTING ... B-3
EVALUATION OF TRANSLATION RESULTSoooiiie e B-4
EXAMINATION OF COMPILATION RESULTS ... B-5
EXAMINATION OF SLOC IN COMPILE INFORMATION TABLEccocoeeiiiiiieeieeeee B-6
EXPLANATION OF ADA COMPILATIONSoriiiie e B-6
INVESTIGATION OF COMPILATION ERRORS. ... B-7
PROJECT-CONTRIBUTED LEGACY CMS-2 SAMPLES ... B-8
CONCLUSIONS ... e e e e e s e e e e s e s B-9

APPENDIX C : RESULTS OF REENGINEER UNTIL ADA CODE EXECUTES

CORRECTLY ittt e e et e e e e e e e e e e e e e e e e C-1
OVERVIEW ...ttt e e e e s e e e e s e e e e s ennnee s C-1
LINE COUNT COMPARISONSot C-2
DIFFICULTY OF CONVERSION METRICSoooi e C-4
WEIGHTED MCCABE AND PROGRAM SIZE METRICS ..o C-6
ADA 95 QA9: REENGINEERING A MIXED-MODE MATH TEST IN ADA 95................. C-8
CONCLUSIONS ... e e e s e e s s e e e s e e e e s nnnee s C-9

APPENDIX D : METRICS INTERPRETATIONcooiiiiiieee e D-1

MCCABE CYCLOMATIC COMPLEXITY ..ooeiiiiiiiee et D-2

HALSTEAD METRICSoveeeeeeeeeee e eeeeeeeeeee s eeeesseeeseeesees e ss e ss e seeese s se e sseeeseseseeseeeeees D-6
SOURCE LINES OF CODE (SLOC)eveiteeieeeeeeseeeeeeeeeeesesseeseeseesseessesseessseeeeeeseesse D-6
SOFTWARE PRODUCTIVITY CONSORTIUM (SPC) METRICS.......ooveveeeereeereesreenennn. D-7
PERSON-HOURS.......ovoteeeteeeeeeeeeeeeseeesseeeeeeeseseseseeesseess et eeeseee s e se et eeseesee s eesesse D-12
DIFFICULTY OF CONVERSION HOURS (DOCH)oveevereeeseeseeeseeeeeseeseeesseessesses D-13
DIFFICULTY OF CONVERSION SLOC (DOCS) ...ovevveeveeeereeseeseeesseeeeseeseeeseeessessens D-13
TRANSLATION SOURCE LINES OF CODE RATIOcovoteieeeeeeeeeeeeeesseseeeeeseseeeneenn D-13
APPENDIX E : POTENTIAL FOLLOW-ON WORKcooviuiereeteeeeereeeeeeeeseeereeesennns E-1
IMPROVE QUALITY OF TRANSLATED ADA SOURCEoouiveeeereeeeeeeseeseeerseresseeseens E-1
EXAMINE PERFORMANCE OF EXECUTING ADA COMPONENTS......o.vvveverererernenes E-2
EVALUATE OTHER TRANSLATOR CAPABILITIES w...oveuveeeeeeeeeeeeeeeeeseeseesseseeeereseeseens E-2

APPENDIX F : RECORD FOR REENGINEER UNTIL ADA CODE EXECUTES
CORRECTLY ittt ettt e e et e e e e e e e e et e e e e e e e e e eennnnees F-1

APPENDIX G : PERSON-HOURS ... G-1

APPENDIX H : ADA 95 QA9: REENGINEERING A MIXED MODE MATH TEST IN

A D A O e s H-1
APPENDIX | : ADA QUALITY AND STYLE CRITERIA.....ccooii e -1
APPENDIX J : ADA LINE COUNTERoiiiiiiiii e J-1

ADA SOURCE FOR SLOC COUNTER (ASLOQC)cociiiiiiiieiiei et J-1

APPENDIX K : SAMPLE SOURCE CODE: QA9 PROCEDURE QTSYNOPS CMS-2

AND TRANSLATOR PRODUCED ADA ... K-1
CMS-2 QTSYNOPS ... e e s K-1
APL GENERATED ADA QTSYOPS ... et K-3
CCCC GENERATED ADA QTSYOPS et K-6
TRADA GENERATED ADA QTSYNOPS ... K-9

APPENDIX L : TRANSLATION ANALYSIS TOOLS ... L-1

APPENDIX M : MK-2 CMS-2L AND ADA SOURCE CODEccoiiiiiiiiiiieiiii, M-1

SOURCE CODE LINES OF CODE (SLOC) ...cciiiiiiiiiieiiie et M-2
NAMING CONVENTIONS ... oo e e M-3
ELIMINATION OF INTERMEDIATE VARIABLES ... M-3
USE OF STANDARD PACKAGES ... M-4
MEMORY MANAGEMENT ...t e e M-4
PERFORMANCE ...ttt e e e s e e e s e e e s ennn e e e e M-6
POSITION TO REENGINEER.........oiiiiie e M-7
ORIGINAL CMS-2L MK-2 FIRE CONTROL SYSTEMccoiiiiiiiiiiiee e M-8
ADA TRANSLATION USING APL TRANSLATORccoiiiiiie e M-12
APL TRANSLATOR COMMON PACKAGES ... M-19
ADA TRANSLATION USING CCCC TRANSLATOR ...t M-23
CCCC TRANSLATOR COMMON PACKAGEoooiiiiiiee e M-37
ADA REENGINEERING OF MK-2 CODE BY HANDcooiiiiiiiee e M-49

Figures

1. High-level strategy: translate, reengineer, both , or discontinue........................ 5-7
2. QA9 CMS-2 and Translated Ada QA9 Line COUNtSccevvieeeiiiiiiiiiiiiineeeeeeee A-16
3. HAIStEAA MELIICS ... e e e e e e e A-17
4. McCabe Cyclomatic Complexity Metric - 1........coouiiiiiiiiiiiiieiiiiiiiiie e A-18
5. McCabe Complexity versus Percent of Ada QA9..........ciiiiiiiiiiiiiiiicee e A-21
6. DD-Path graph for paths program ... D-31
7. DD-Path graph for paths program with unreachable codeccccccceeeeeeni D-4
8. Procedure Accessing Global Variables without Renaming and without a

“USE ClAUSE ettt e e e e e e e e e rr s D-9
9. Procedure Accessing Global Variable with a “Use Clause”...............cccveeeeen. D-9

10. Procedure Accessing Global Variables with a Renamed Addition Operator and
WIthOUL @ “USE ClaUSE”o e e e e e e e eenaeee D-9
11. Procedure Accessing Global Variables with a Renamed Server Package and
Addition Operator and without a “Use Clause”............cooeeiiiiiiiiiiiiiiiinee e D-10
12. Ada 95 Procedure Accessing Global Variable with a “Use Type Clause” and no
[T o= 1011 o [P TUPPPPPRRTRR D-10
13. Ada 95 Procedure Accessing Global Variables with a “Use Type Clause” and with a
Renamed Server Packagecooo oo D-10

14. Ada 95 Procedure Using Access-Subprograms with a “Use Type Clause” and with a

Renamed Server Packageoooo oo D-12
15. Class Structure for Target ODJECTiii i H-2
16. Class Structure for the Operation ODJecCt............ueiiiiiiiiiiii H-3
17. Information Structure for the Integer-based Test_Case_Subclasses. H-4
18. Information Structure for the Real-based Test Case Subclasses..................... H-5

19. Information Structure for the Fixed-based Test_Case Subclasses Fixed-based
TeSt_Case SUDCIASSEScoooieiiiiiiiee e H-6

VI

Tables

1. Computers and Software Products Used by Phase of Evaluation - 1 2-3
2. Software Products VS. COMPULET........cooiiiiiiiiiiiee et 2.5
3. Projects Contributing CMS-2 Source Code..........coovviiiiiiiiiiiieeeeeeeeeiiie e 2-6
4. Key Characteristics of CMS-2 vS. Ada 95cooiiiiiiiiiii e 2-7
5. Translator ProfileS ... 3-3
6. Summary of Translator Evaluation RESUIScoooeiiiiiiiiiiiiiii e 3-5
7. APL QA9 Package Specification Compilation Error List Using the GNAT
(@] 001 o] [T gt RSP TTR A-4

8. APL QA9 Package Body Compilation Error List Using the GNAT Compiler - 1 A-7
9. CCCC QA9 Package Body Compilation Error List Using the GNAT Compiler.. A-12
10. TRADA QA9 Package Specification Compilation Error List Using the GNAT

(@] 091 o] 1= ST PTTR A-13
11.Total SPC Ada Style Violations of Ada Usage (QA9 Produced by Translators) A-23
12.Details on SPC Ada Style Violations: Ada QA9 Produced by APL.................... A-24
13.Details on SPC Ada Style Violations: Ada QA9 Produced by CCCC................. A-25
14.Details on SPC Ada Style Violations: Ada QA9 Produced by TRADA A-26
15. Stress Testing Using MTASS Test Suite - Translation Information - 1.............. B-9
16. Stress Testing using MTASS Test Suite - Compile Information - 1................... B-23
17.Translating and Compiling Using Project-Contributed Legacy CMS-2 Source

@00 L= U B-37
18.QA9 Source Lines of Code by Translator at Various Stages

(include Predefined) = 1 ittt eeeees C-3
19.QA9 Predefined Utilities Source Lines of Code by Translator............cccccccnnn.. C-4
20. QA9 Difficulty of Conversion Person HOUISccoooeiiiiiiiinieeeeeeeeiiiee e C-5
21. QA9 Difficulty of Conversion SLOC..........oouuuiiiiieeeeeieeeii e C-6
22.QA9 Weighted McCabe Complexity MEetriCcouvviiiiiriiiiiieeeeeeeeeiiiee e C-7
23. QA9 PrOQraM SIZE ...uuiei et e ettt e e e e e e e e e e aaab e e e e e eees C-9
24.Hours Performing Preliminary Tasks - 1uuiiiiiiiiiiiiiiie e G-1
25.Hours Performing Quick Look Inspection Tasks - 1cccovviiiiiiiiiiiiiiiiinneeeeee, G-5

VII

26.Hours Performing Stress Testing TaskS - 1cooooiiiiiiiiiiiiiiiieeeeeeeii e G-8

27.Hours Performing Reengineering Tasks - L.......ccoooiiiiiiiiiiiiiieeeeeeeeiiie e G-10
28.Hours Performing General Tasks and Final Reportccoooovvviiiiiiiiiiineeeeeee, G-12
29.Person-hours by work phase for QA9 translations............cccccoeevvviiiieiiiiineeeeens G-14
30.QA9 Person-Hours/100 SLOC Translatedcccoouveiiiieiiiieeeeeeeeeeee e, G-15
31.Ada Quality and Style Crteria - 1ccooiiiiiiiiiiiee e I-1
32.Description and POCs for Analysis Tools Applied - 1ccooooieiiiiiiiiiiiiiiieeeeee L-1
33.Description and POCs for Potentially Useful Analysis TooIS - 1........ccccoeeeeeeeeee. L-2
34.MK-2 Source Lines of Code COUNLS........couuuiiiiiiieeeeeieeiiiie e M-2

VI

1. INTRODUCTION

BACKGROUND

Over the last three decades the Navy has made a large investment in development of software
using Compiler Monitor System-2 (CM S-2). Many of these systems will be required to meet the
Navy’s needs for at least another decade, and will need periodic upgrades. However, they cannot
easily be upgraded to support requirements of the warfighter. The hardware platforms are based
on 1960s architecture that is very expensive to maintain. CM S-2 software executes on AN/UYK-
7, AN/UYK-20, AN/UYK-43, AN/UYK-44, and AN/AYK-14 Navy standard hardware which is
increasingly expensive to maintain. The CMS-2 language is no longer taught and few new
programmers are willing to learn and use the language. No commercial support exists for the old
hardware environments or the CM'S-2 computer language and associated software tools.

Upgrading to satisfy new mission requirements also poses another problem. The vast mgjority
of these systems have already reached their performance and memory limitations. Additionally,
the high cost of developing applications for archaic, non-supported environments makes such
development very expensive and risky. In such situations, the Navy must migrate or augment
these systems using modern technology.

In upgrading, a program manager faces the problem of converting the existing systemto a
modern system. This means eiminating the operational CM S-2 code, UYK computer, and
associated support software. One approach could reengineer at the requirements/design level and
develop new codein Ada. This approach involves no code translation. A second approach could
capture the legacy system as a starting point. By translating the CMS-2 code into Ada,
development and execution of the operational system can move to modern computers. The
translated Ada code then serves as the base for upgrading the new system. The new software
might be a mix of translated Ada and newly developed Ada for portions of the legacy system that
are not suited for translation (for example, 10 to special devices, direct code, executive service
calls). Besides taking advantage of the existing CMS-2 code, this approach has tremendous
potential for cost and schedule savings to satisfy the mission requirements.

Advantages of using modern technology are:
- commercial, modern, faster, very powerful hardware architectures;
modern programming languages (e.g., Ada 95, C++);
modern interfacing/networking technologies; and
modern software engineering environments with powerful tools capable of providing
high quality systems with high productivity.

The ONR commisioned NRaD to conduct a hands-on evaluation of existing CMS-2 to Ada
translators using controlled experiments. These experiments were performed using representative
samples of operational CMS-2 code. This report contains the results of the experiments, lessons
learned and recommendations.

In discussing capabilities of software "translator” programs, keep in mind that the three
products evaluated (APL, CCCC, TRADA) perform operations much closer to what is sometimes
called trandliteration rather than complete translation. Trandliteration is only the first step in the
translation process. In natural language translation, such as from French to English, this first step
changes the words and sentences from the original French to the English equivalents. The process
continues by changing the resulting text into good, polished English. Source code translators
convert CM S-2 statements to equivalent Ada statements -- from CM S-2 constants, variables,

1-1

procedure calls and GOTO statements to Ada constants, variables, procedure calls, and GOTO
statements. Trandliteration produces Ada that mirrors the CMS-2 code in both program structure
and complexity, as measured by Halstead and M cCabe metrics.

Trandliteration does not:
- Reduce code complexity.
Perform significant code restructuring.
Produce Ada that conforms to guidelines.
Produce Ada that makes strong use of information hiding.
M ake source code quality improvements, such as removal of variables that are defined
but unused or removal of dead code.
Take advantage of standard Ada packages (e.g., Ada.Calendar)

Those are additional actions that should be part of a complete translation process. The
translation process can also include modifications required for execution on new target hardware
(for example, a SPARC rather than a UY K-43), conversion of direct code to Ada, modifications to
support different input or output devices, and other changes needed for correct compilation and
execution of the Ada code.

PURPOSE OF THE EVALUATION AND KEY ISSUES

The purpose for conducting this evaluation are listed below with associated key issues. These
key issues were addressed at the beginning of this study and serve as a guide for the evaluation.

1. Todeterminethe overall maturity of the CMS-2 to Ada translators and associated tools.

Key issues are:

- Aretrandators at or near “production” quality?
Aretranslators usable for very large systems?
Can translators be easily learned by new users?
Aretranslation capabilities lacking that could be provided with new tools (for example,
removal of GOTOs and unused variables)?
How useful arethe CMS-2 analysis tools, and the assembler to CM S-2 design extractor
inthe CM S-2 to Ada translation process?

2. Todeterminethe capabilities of existing CMS-2 to Ada translators.

Key issues are:
- What isthe quality (for example, Halstead and M cCabe metrics and conformance to
Ada guidelines) of the Ada code produced?
What is the CM S-2 construct coverage provided by the translator?
Arethe CMS-2 constructs translated accurately?
What is the manpower effort required to translate the code?
What is the manpower effort required to get the code to compile?
What is the manpower effort required to get the code to execute correctly?
What are the computer resources required to translate code?

1-2

3. Toprovideinformation to project managers to assist them in the evaluation of costs and risks
of translating CMS-2 to Ada.

Key issues are:
- What arethe dollar, resource, and time costs associated with a translation process?
How much specialized training is required to support the translation process?
How much of a schedule reduction is possible with a translation process?
What is the quality of a system produced using a translation process?
What is theimpact of direct code to the overall translation process?
What are the technical barriers associated with a translation process?
What are therisks associated with using a translation process?
Isit practical to consider a translation process?

The program manager needs information on person-hours, resource costs, risks, technical
issues, and feasibility to evaluate the practicality of using a translation approach for the project.
In making a decision to reengineer at the specification or design level or to reengineer using a
tranglation process, the answers to the above questions help provide insight towards making the
necessary engineering tradeoffs. Depending on the amount of redesign required, a program
manager might even use a mixed approach where subsystems requiring significant change are
redesigned from scratch and subsystems that are relatively stable are translated. Information
throughout this report will assist the CMS-2 project manager in answering these questions for the
project scenario. The answers to these questions are prerequisite to making sound reengineering
decisions.

USERS OF THE RESULTS

Definite or potential users of the evaluation results include the Office of Naval Research
(ONR) to address science and technology deficiencies, managers and software engineers of
projects considering transition from CM S-2 to Ada, and developers of the translators and
associated tools as feedback on the current state of their products.

PURPOSE OF THIS REPORT

This report provides the results of the translator evaluations and related findings. It isintended
primarily for the program manager and their technical representatives.

1-3

CONTENTS OF REPORT

This report contains the following:
. Anoverview of the evaluation process
An overview of theresults
L essons learned’
Recommendations’
Results of quick look inspection
Results of stress testing
Results of reengineering until Ada code executes correctly
An interpretation of the metrics collected
A discussion of potential follow-on work
References
Annotated bibliography
Other metrics

Throughout this report, when we say that a sample “compiled”, we mean that it ran through the
compiler with no compiler detecting errors.

Point of contact for information on this report is:
Hans Mumm
NCCOSC RDT&E DIV D4122
San Diego, CA
92152-5000
mumm@nosc. mil
(619)553-4004
(619)553-4808 (fax)

" Thefirst four sections are key to PM decisions. The remainder is supporting evidence and is included for
technical completeness

1-4

2. OVERVIEW OF THE TRANSLATOR EVALUATION PROCESS

The CMS-2 programming language is comprised of many dialects. Each is almost a full
set of the language. The five principal dialectsare CMS-2Y, CMS-2L, CMS-2M, CMS-2A,
and CMS-2K. Translators were exercised with CMS-2Y, CMS-2M and CMS-2L source
code samples selected to exercise all major CMS-2 constructs. The CMS-2A and CMS-2K
dialects only differ from the three dialects exercised in the direct code that they allowed. The
CMS-2 to Adatranglators do not translate the embedded assembler, but rather bypassit or
convert it to Ada comments. The Machine Transferable Support Software (MTASS) CMS-2
User Handbook describes the syntax (structure) and semantics (meaning) of the CMS-2
language.

TRANSLATOR EVALUATION

Thetranslator evaluation was done in three phases. Theinitial phase was Quick L ook
Inspection. The purpose of this phase was to ensure that all products and resources were
ready for subsequent stress testing phases. During this phase a small CM S-2 sample for
CMS-2L, less than 5000 source lines of code (SLOC), was CM S-2 compiled and executed.
This executing CMS-2 sample was the baseline for comparisons with executions of
equivalent code translated to Ada in the third phase. The Quick Look Inspection sample
chosen wasthe MTASS UYK-43 Quality Assurance 9 (QA9) test. QA9 was developed to
examinethe MTASS CM S-2 compiler’s ability to generate arithmetic code that provides
acceptable results when executing on an AN/UYK-43 MIL-STD computer. CMS-2 analysis
tools were run on the sample to gather Halstead and M cCabe metrics, SLOC counts, and
other information. The subject translators were used to convert sample CM S-2 code to Ada
which were then compiled with the GNU New York University Ada Translator (GNAT),
VAX Ada, and Sun Ada compilers. Ada analysis tools were executed on the translated code
to gather SLOC, Halstead, McCabe, and other quality metrics.

The second phase was Stress Testing with large CMS-2 Samples. The purpose of this
phase was to collect translator behavior data whilerigorously exercising all CMS-2
constructs. 84 filesfromthe CMS-2 UYK-7 test suite were sdected for input to the three
translators. Additional samples were contributed by project offices from Space and Naval
Warfare Systems Command (SPAWAR), Naval Sea Systems Command (NAVSEA), and
Naval Air Systems Command (NAVAIR). Stress Testing was taken beyond translation to
collect Ada SLOC and compile statistics. All Ada generated by each translator was input to
three commonly used Ada compilers (GNAT, VAX, Sun) to determine the percentages that
compiled correctly.

Thethird phase, Reengineer Until Ada Code Executes Correctly, covered the
reengineering of each translator’s QA9 code, compiling, linking, and executing. The intent
of this phase was to continue until the results produced by Ada QA9 coincide with those
produced by the CMS-2 QA9 basdline sample. An Ada harness/driver was produced by
reengineering the translated CM S-2 test harness. During this phase, we also decided to
redesign and rewrite the QA9 functionality in Ada 95 directly to compare the product of a
total reengineering effort versus translator based results. This phase included the analysis of
translated NAV SEA project code with comparisons to the same set of code reengineered by
hand. Table2. liststhe computers and software products used by each phase of the

2-1

evaluation process. Table2 . shows the products that reside on each computer. Additional
information on the analysis tools used during this evaluation and other potentially useful
analysis tools (but not used in these tests) is found in Appendix L.

CMS-2 TEST CASES

Unclassified test cases collected included CM S-2 source code from actual SPAWAR,
NAVSEA, and NAVAIR projects and the MTASS CM S-2 Compiler Validation Suite.
Thesetest casesareshown in Table2 . . Test cases were used primarily during stress
testing. Projects contributing these test cases and function of the contributed code are listed
beow. For moreinformation, see Table B-3.

CMS-2 VERSUS ADA
Characteristics of the CMS-2 and Ada 95 languages are summarized in Table2 . .

2-2

Table 2.

Computers and Software Products Used by Phase of Evaluation - 1

Quick Look Stress Reeng. Until
Inspection Testing Ada Executes i
Correctly Function
COMPUTERS & OS

VAX 11/785/VMS 5.5-1 -

SPARC 10/0S 4.1.3 -

PC 486/MS-DOS 6.22 -

SOFTWARE PRODUCTS
CMS-2 Test & Analysis Tools

MTASS (Machine Transferable X Stress test

Support Software) Ver. 11 Rev. 4.0 translators

METRC (CMS-2 Source Code X X X Produce SLOC,

Metrics Generator) Rev. 6.2 Halstead &
McCabe metrics

DESAN (CMS-2 Source Code X X X Examine suitability

Design Analyzer) Rev. 6.1 for translation

Products Evaluated

APL Translator Rev. 2.8 X X X Translate CMS-2
to Ada

CCCC TransFormer Ver 6.1 Rev. X X X Translate CMS-2

071196 to Ada

TRADA Translator PBL 1.0 X X X Translate CMS-2
to Ada

Synetics Assembler Design Extractor X Translate direct

(Assembler to CMS-2 Translator) code to CMS-2

Ada Compilers
GNAT 3.01 Ada Compiler (Ada 95) X X X

Sun Ada Compiler 1.1 (Ada 83)
VAX Ada Version 2.2-38 (Ada 83)

2-3

Table 2-1. Computers and Software Products Used by Phase of Evaluation - 2

Quick Look Stress Reeng. Until
Inspection Testing Ada Executes i
Correctly Function
Ada Analysis Tools
ADA SLOC Counter Count SLOC
Logiscope Produce Ada
guality metrics
Ada-ASSURED X X Examine
conformance to
guidelines

2-4

Table 2. Software Products vs. Computer

Software Products

VAX 11/785
VAX VMS

SPARC 10

Sun OS
4.1.3

PC 486

MS-DOS
6.22

CMS-2 Test & Analysis Tools

MTASS (Machine Transferable Support
Software) Ver. 11 Rev. 4.0

METRC (CMS-2 Source Code Metrics
Generator) Rev. 6.2

DESAN (CMS-2 Source Code Design
Analyzer) Rev. 6.1

Products Evaluated

APL Translator Rev. 2.8

CCCC TransFormer Ver. 6.1 Rev. 071196

TRADA Translator PBL 1.0

Synetics Assembly Design Extractor
(Assembler to CMS-2 translator) Prototype

Ada Compilers

GNAT 3.01 Compiler (Ada 95)
Sun Ada Compiler 1.1 (Ada 83)
VAX Ada Version 2.2-38 (Ada 83)

Ada Analysis Tools

ADA SLOC Counter

Logiscope

Ada-ASSURED

2-5

Table 2-3. Projects Contributing CMS-2 Source Code

Project CMS-2 Dialect Function Sponsor POC

S3 Aircraft Tactical Mission | CMS-2Y (with Displays radio frequency NAVAIR Steve McComas
Program ULTRA-32) (RF) data

(215) 441-1771
H60B Helicopter (AOP CMS-2 (Converted Processes acoustic data NAVAIR Charley Booth
ECP-267 FLIR/Datalink from CMS-2M to
Upgrade) CMS-2) (607) 751-3408
AEGIS SPYLOOP CMS-2L Captures timing data NAVSEA Marv Bomberg

(612) 546-7402
MTASS CMS-2 Compiler CMS-2Y and CMS- | Automated CMS-2 NAVSEA Bryan Riegel
Validation Suite 2L compiler tests

(619) 553-9446
Combat Control System CMS-2L Computes target location NAVSEA Dan Juttelstad
MK-2 Fire Control System information

(401) 624-9615
Extremely Low CMS-2M Modulator IO subprogram SPAWAR Bart Brock

Communications (ELF)
Transmit Processor
Computer

(803) 974-4595

2-6

Table 2. Key Characteristics of CMS-2 vs. Ada 95

CMS-2

Address based

Global variables (COMPOOLYS)
Overlay memory management
Source code INCLUDE capability
Select source code switching on
compilation basis (CSWITCH)
minimal support for reentrancy
Supports limited user defined
types with type compatibility
rules

No exception handling, and no
data abstraction

Some information hiding; scoping
rulesrestrict use of data within
scope

Supports functional programming
Tied to UYK computers

Ada 95

Object-oriented

Strong real-time support
Support for distribution
Interfaces to other languages (e.g.,
C, FORTRAN, COBOL)
Strong typing

Exception handling
Information hiding capabilities
Data abstraction

Platform independent

Standard packages for 10,
elementary mathematical
functions, and string handling
Command line interface
Supports recursion and reentrancy
Supports software engineering
principles

Supports programming in the
large

Supports mission-critical and
safety-critical applications

2-7

2-8

3. SUMMARY OF TRANSLATOR/TRANSLATION RESULTS

TRANSLATOR PROFILES

Table 3-1 shows a profile of the three trandators. This profile includes the translator points-of-
contacts, major characteristics of the translators, and summary of the results of the evaluation. Table
3-2 summarizes tranglator results.

For details on these results presented and for additional results, we suggest that the reader turn to the results
appendices of this report.

CONCLUSIONS

Thefollowing are the significant conclusions from the trandator evaluation.

1.

The overall complexity and the distribution of the complexity across the translator-
produced Ada modules was similar to the corresponding CMS-2 code. This suggests that
each of the trandlators took a trangdliteration approach to trandation. The McCabe and
Halstead metrics show that the complexity of the translator-produced code mirrors the
complexity of the CMS-2 code. Thetranglators do not introduce or reduce complexity.

The overall complexity and the distribution of complexity across the translator-produced
Ada modules was very similar across trandlators. This suggests that each of the
trangators took a similar approach to trandation and to the distribution of control and
data. The McCabe and Halstead metrics show the similarity in complexity.

Most of the programs produced by the translators required manual reengineering to
compile and execute successfully.

Thetrandators all produced programs that contained many features (e.g., GOTOs, “use
clause’, subprogram exceeds 200 SLOC) that conflict with the Software Productivity
Consortium (SPC) programming style guidelines (Software Productivity Consortium,
1992). Thevast majority of these features appear to reflect characteristics of the CMS-2
ancestor program. The non-compliant codeis similar across trandators.

There was little difference among the trandators in the degree of difficulty to perform
conversions of CM S-2 to Ada (person-hours and SLOC changed). There were problems
with each because Ada 83 does not include standard mathematical functions. (Thisis not
a problem for Ada 95 since mathematical packages are now part of the standard.) There
were problems executing the Ada on Suns because the requested range of a floating point
type produced exceeded the platform limitations. Changes had to be made to the code
produced by each translators. These are described in Appendix A, C, and F.

The person-hours and Source Lines of Code (SLOC) changed or added shown in
Appendix C, may be useful in making “ball park” estimates of the effort required to
trandate a CM S-2 application. However, the CM S-2 sample upon which these metrics
were based contained no direct code, overlays, or special device lO.

The object-oriented features of standard Ada (Ada 95) enhance the potential of a redesign
and rewrite of low quality CM S-2 applications in ways that dramatically reduce control
complexity and program size. This conclusion is based on an experiment to redesign and
manually rewrite QA9 in Ada 95. The quality of the redesigned and rewritten application

31

10.

11.

was far superior to the tranglated applications as indicated by Halstead and McCabe
metrics and the conformance to Software Productivity Consortium style guidelines
measured by L ogiscope.

There were catastrophic failures by all trandators during stress testing. The developers
were very responsive in fixing these trandator deficiencies with an average turnaround of
two working days. By the end of testing, only two catastrophic failure conditions
remained in final trandator revisions for thistest set. These were QA7A for CCCC and
MK-2 for TRADA. Reference Tables B-1 and B-3.

The quality of Ada souce code produced by the translators is of low quality and difficult
to modify and extend. Many Ada style guiddines were violated because the translated
code closdy mirrorsthe CMS-2. Problems included the use of GOTO statements (all),
use of “use clause’ (APL, CCCC), predefined information that is produced but not
needed (APL, CCCC), packaging that is difficult to understand since it was not done by a
human (all), excessive use of pointers (CCCC), and others that are described throughout
the report.

The person-hours per 100 CM S-2 statements (delimiting $s) required to translate and
successfully execute the QA9 samplein Ada when using the Sun Ada compiler were:
APL, 1.37 person-hours; CCCC, 1.91 person-hours; and TRADA, .62 person-hours.
Expect the trandlation of deployed CMS-2 systemsto require alot moretime. The QA9
did not include IO to special devices, direct code, or overlays. For details on how these
numbers were calculated see Appendix G: Table G-6, Table G-7, and the discussion of
thesetables.

Trandated code, intended to evolve and be maintained, would require significant
reengineering. The best tranglation had about a 2:1 SL OC expansion; the worst
trangdlation had about an 8:1 SLOC expansion. A hand reengineering into Ada of the
original CM S-2 code had about a .5:1 SLOC expansion. The translated code had serious
deficiencies in the use of naming conventions, dimination of intermediate variables, use
of standard packages, memory management, performance, and position to reengineer.
The comparative analysis along with source code for each systemis provided in
Appendix M.

3-2

Table 3-1. Translator Profiles

Availability/Cost to
Acquire

and body in second file
Product or Services

bodiesin onefile
Contact Vendor

APL CcCccC TRADA

Vendor Representative James G. Palmer Noah Prywes Joe Whalev/Richard

APL CCCC Brimson
Room 6-105 2300 Chestnut St. CSsC
Johns Hopkins Rd. Suite 230 Applied Technology
Laurd, MD 20723 Philadelphia, PA 19103 Division
(301) 953 6800 (215) 854-0555 4045 Hancock Street
(619) 225-8401
Characteristics

Current Version Rev. 2.8 Ver 6.1, Rev. 071196 PBL1.0

Host Computer/OS Sun OS VAX VMS VAX VMS

User documentation for Yes Yes Yes

running trandator

Assistance needed in Some required Some required None required

running trandator

Support for translator Trandator not currently Trandator not currently Trandator not currently

development/ trandlation funded by Navy/must be funded by Navy/must be funded by Navy/must be

assistance funded by project funded by project funded by project

Deveoper says CMS-2 All Listed in Section 7 of Listed in Section 3.8 of

construct translates CCCC user TRADA user

documentation (CCCC, documentation (CSC,
1996) 1994)

Ada Packaging Produces one Produces monoalithic Produces multiple
specification and one package with nested specifications and bodies
body packages

Files Produced Specification in onefile All specification and Each specification and

body in separate files
Contact Vendor

Table 3-1. Translator Profiles - 2

APL CcCcCcC TRADA
Predefineds Provides predefined Provides predefined Generates customized
package specification and package specification and predefined package
body containing body containing specification containing
commonly used types and commonly used types and only types and functions
functions functions needed (CMS-2 Types)
(BASIC_DEFNS) (PREDEFINEDS)
Math library used Sun meth library VAX math library User must Provide!
Control of trandation Uses switches to control No control (Always Uses script file to control
process & outputs user options produces “use clause’) user options (e.g., “use

Termination and
placement of errors

Other Characteristics:

Continues trandation
regardless of errors,
brackets errors and non-
trandatablesin Ada
comments

Continues trandation
regardless of errors,
brackets errors and non-
trandatablesin Ada
comments

Supports overlays,
produces access types and
unchecked conversions

clause’ may be on or off)
Depending on errors
encountered may stop
processing & notify user.
Some error are annotated
in Ada comments, some
placed in summary file

! TRADA generates math functions which return the value of 1.0. It is up to the user to implement the correct functionality of each math function or use the one provided in

Ada 95.

3-4

Table 3-2. Summary of Translator Evaluation Results

APL CcCccC TRADA
Quick Look+Reengineering Results (QA9)
Weighted M cCabe cyclomatic complexity for Ada QA9 - 65 - 67 66
produced by translators
Executable statements® . 3642 . 3887 3759
Stress Testing Results
Stress testing catastrophic failures? - 11 .10 6
Stress testing Ada SLOC produced - 468.9K - 925.7K 3‘385K(598.9K
)
Wall clock time for running stress tests - 4hr42min - 31hr59 min 6 hr 22 min(9
hr 30 min) *
Percentage of clean compiles out of 84 stress test files
VAX Ada . 1% (184) - 17% (14/84) 29% (24/84)*
GNAT . 1% (184) . 12% (10/84) 29% (24/84)*
Sun - 1% (1/84) . 12 % (10/84) 26% (22/84)*
Percentage of output files produced for 84 input stress test files - 100% - 99% (83/84) 64% (54/84)°
(84/84)

! See Appendix C for more details

2 Catastrophic failures were defined as core dumps, trace backs, infinite loops, and empty Ada output file with no notification.
*The number is actual. The number in parenthesis is an extrapolation (if Ada code would have been produced for all 84 files).
* See Table B-2 for more details

® See Table B-1 for more details.

35

4. LESSONS LEARNED AND OPINIONS

LESSONS LEARNED

1.

10.

Trandation from CMS-2 to Ada requires a very strong expertisein CMS-2, the
application program being trandlated, and Ada. Do not attempt it without expertisein
all threeareas. Training in the use of thetrandators and tools is desirable,

Trandation from CMS-2 to the current standard, Ada 95, is easier and faster than to
Ada 83 because Ada 95 includes the standard mathematical functions. Ada 83 did not
include a floating point exponent which was required by the sample code taken to
execution in Ada (QA9). Ada 95 is also preferable because it supports modern
software engineering capabilities (e.g. object oriented programming improves
interface capabilities, and real time programming enhancements).

Translators were advertised (intended) to generate correct compilable Ada code.
Trial compiling of generated Ada during translator evaluation showed that this was
often not true. (Remember that non-trandlatables, such as direct code, are bracketed
inside Ada comments and will not “dirty” a compile)) During Stress Testing correct
compiles occurred no more than 44% of the time (See Table B-2).

Trandation installation instructions were adequate to good. We needed no help from
the Computer Sciences Corporation to install and run the TRADA trandator. Some
assistance was needed with the APL and CCCC trandlators. An NRaD software

engineer, who participated in the evaluation, was already very familar with TRADA.

Other tools not used in the translator evaluation may also be useful in the trandation
process. Clueisareverse engineering tool developed by Mitrethat draws flow
diagrams from CMS-2 source code. The Design Analyzer calltree feature was not
used but may be useful. The Rational Reengineering Toolkit looks promising for
restructuring translated Ada source code.

After the environment was established for each trandator, the translations were easier
than expected. Thetrangdlator’s environment includes logicals, command files, and
linking. We did not need any formal training.

Catastrophic failures were found in all translators during testing.

The Synetics Assembler Design Extractor (direct codeto CMS-2 trandlator) only
executed correctly on its demonstration program. It was unsuccessfully executed on
samples chosen from the QA tests and project test cases.

Halstead and M cCabe metrics did not enable us to qualitatively distinguish between
trandator outputs. Thisislargey dueto the fact that the translator vendors took a
"trandliteration” approach to trandation. As a consequence, source code content and
structure was very similar. Halstead and M cCabe metrics did show that the
complexity of the Ada code produced by the translators mirrored the CM S-2 code.
McCabe was a very useful in comparing the complexity of translated Ada versus
redesigned/rewritten Ada.

Comparing SLOC between Ada and CM S-2 indicated that the trandlators did not
raise the levd of abstraction during trandation. That is, they tended to pick one or
more Ada features for each CMS-2 feature. Other than indicating that, SLOC was
not a particularly useful metric. It ispossiblefor a module with a smaller SLOC
count to have more complex expressions than another and be more difficult to
understand. It is even possible for a module with a larger SLOC count to be more

4-1

11

12.

13.

14.

15.

efficient than one with fewer SLOC. A trivial exampleis oneinwhich aloop is
unrolled and inlined. It is also possible for a module with more comments to have
fewer meaningful comments. For example, Ada-ASSURED inserts a line of dashes
between subprograms in a package as part of its formatting capability. This raises the
"comment count™ substantially without adding any meaning whatsoever.

SLOC comparisons between Ada and CM S-2 had to be done with care. SLOC was
counted several ways: as straight editor lines of code in both CMS-2 and Ada, as
delimiting dollar signs ($) in CMS-2 and delimiting semicolons (;) in Ada. Three
different kinds of comments were counted in CMS-2 (including the one for compile
listing formatting) whilein Ada thereis only one kind of comment. We also had to
figure out how commercial analysis toals, like Logiscope, counted lines so that
comparisons of weighted metrics between CM S-2 and Ada source were valid.

A project should expect the trandated Ada source lines of code to be greater than that
for the corresponding CMS-2 code. For example, Table B-4 (last page) shows that
for the 84 QA files used in stress testing, the increase in code size is more than 2:1
(AdaCMS-2) for TRADA, dlightly less than 2:1 for APL and almost 4:1 for CCCC.
These SLOC counts are lines as counted by an editor and include comments and
blank lines. The predefined functions and utilities produced by the trandlators are
included in these line counts. Theratiosin SLOC count vary from project to project.
Thetrandated Ada SLOC count will always exceed the CMS-2 SLOC count. One
might expect the source lines of code for Ada code reengineered by hand to be
approximately half of the CMS-2 code.

The evaluation process did not address the issue of target platform. For example, the
Quick Look sample tested mathematical operations for UYK computers and some of
the floating point type declarations reflected this. However, such a test makes less
senseif thetarget is a Sun Workstation. The trandlators should be "parameterized,”
for specific targets, or for portability.

We found that approximately 90% of the time when translated Ada code compiles
with one of the three compilers, it will compile with no changes or with minor
changes using the other two compilers (VAX, Sun and GNAT).

Metrics used to measure the effort required to take translated code through successful
compilation and execution were biased. Person-hour were biased by (1) the order in
which QA9 samples taken through compilation and execution and (2) the order in
which samples were compiled by the three Ada compilers. The difficulty of
conversion metric that counted SL OC modified or added until successful compilation
and execution were achieved was biased. Some code changes were much easier to
make than others (e.g., finding the cause for a single “ program error” was more
difficult than making fixes to many lines of code where the translator produced a
floating point exponent which is not allowed in Ada 83.) How you count lines of
code modified when a segment of code is moved from one location in a program to
another can also bias this metric. Future related studies need to be aware of theses
biases so that metrics that measure level of effort can be improved.

4-2

16. Trandated code, intended to evolve and be maintained, would require significant
reengineering. The best translation had about a 2:1 SL OC expansion; the worst
translation had about 8:1 SLOC expansion. A hand reengineering into Ada of the
original CM S-2 code had about a .5:1 SLOC expansion. Thetranslated code had
serious deficiencies in the use of naming conventions, dimination of intermediate
variable, use of standard packages, memory management, performance, and position
to reengineer. See Appendix M for details.

OPINIONS
1. TheCMS-2to Adatranslator developers were all very responsive in fixing translator
problems with an average repair turnaround of two working days. By the end of
testing, only two catastrophic failure conditions remained in final trandator revision
for thistest set. Thesewere QA7A for CCCC and MK-2 for TRADA.

2. Trandation iswell-suited for stand-alone algorithms free of direct code.

3. TheQuick Look and Reengineer Until Ada Code Executes Correctly translation
phases demonstrated that automatic trandlation of general purpose programming
constructs from CMS-2 to Adaisfeasible. However, if there are plans to maintain
the trandlated code for some time and to extend it, be aware that quality
improvements are needed and that trandator produced code is more difficult to
understand than code produced by humans. Of the three trandlators, we found the
CCCC produced Ada code to be the most difficult to understand because of the
extensive use of pointers. Quality improvements that are needed to make translated
code easier to understand include less use of access types (CCCC), dimination of
GOTOs (all), improved packaging (APL), dimination of “use clauses’ not used
(APL, CCCC), dimination of variables that are defined but not used (al), and
moving declarations and type definitions down to the appropriate leve for the
purpose of information hiding (all).

4. Correct trandation of Ada can be validated more easily when it has not been
restructured. We can visually compare the Ada and CM S-2 source code. Webdieve
that many source code quality improvements are best handled following translation.
Tools that make these quality improvements have wide application and are certainly
useful for more than just translation efforts. Some potential post-translation quality
improvements that can be done by tools include the removal of GOTOs and other
restructuring, eimination of variables that are declared but not used, dimination of
dead code, and automated information hiding (moving declarations and type
definitions down to reduce visibility).

4-3

5. RECOMMENDATIONS

This section provides recommendations to CM S-2 project manager's, to the Navy for advancing
tranglator technology, to trandlator vendors, and to tool vendors.

RECOMMENDATIONS TO CMS-2 PROJECT MANAGERS WHEN CONSIDERING

TRANSLATION

1. Do not trandate unless expertise is available.

Expertiseis needed in CM S-2, the application being trandated (in the same person),
and in Ada. Assistance from trandator expertsis desirable.

2. If seriously considering trandlation, do it soon.

CMS-2 experts are reaching retirement age. CMS-2 analysis tools and some CMS-2
trangators are no longer supported. The availability of the trandators in the futureis
uncertain.

3. Expect trandation to be difficult and time consuming.

The effort will probably include the manual trandation of some CMS-2 code, the
manual translation of direct code, the preparation of new documentation, and learning
how to usethetranglators, and analysis tools. Much will need to be redesigned and
rewritten to newer software and hardware technologies. The following examples will
require significant program redesign:

a)

b)

Memory - CMS-2 uses memory overlays while modern systems use virtual
memory. Conversion of overlaysto relocatable objectsis error prone. Attempts to
use the desired stack memory mode will introduce errors when side effects of
CMS-2 memory overlays were used (this was frequently done).

System Calls - CMS-2 used Executive Service Routines (ESRS) to interface with
the underlying Executive (Operating System). Thereis not always an easy or
correct mapping of ESRs to services in Portable Operating System Interface
(POSIX) compliant environments or in the Ada Run Time Executive. Trangdlators
do not attempt to replace ESRs with logical modern system services. Instead
comments are inserted indicating that the user must do this.

Library Calls - CMS-2 used Common Service Routines (CSRs) for common
function such as mathematical functions. Tranglators do not attempt to replace
CSRswith logical modern library services. Instead comments are inserted
indicating that the user must do this.

/O - CMS-2 used very low level primitivesto effect 1/0. Modern systems have
high-level commands and use change of representation clauses to efficiently
process data internal to the computer yet transmit/receive data in the format agreed
within the interface specification. Practically every 1/0 mechanism will need to be
redesigned in order to be integrated onto hardware and software systems.

5-1

4. Analyze CMS-2 code for suitability for tranglation.

0.

Use analysis tools such as the CM S-2 Source Code Design Analyzer (DESAN) and
CMS-2 Source Code and Metrics Generator (METRC). Thesetools and user
documentation are available as freeware from NRaD. These tools were developed by
the Computer Sciences Corporation with funding from the Ada Technology Insertion
Program, Advanced Combat Direction System and other projects.

DESAN was designed to assist in the reengineering of CMS-2 code prior to translation
to Ada. It identifies overlays, identifies data units that are defined but not referenced,
and identifies data units that are referenced but not set to avalue. Thetool also
examines the scope of variables and makes recommendations to reduce it.

METRC produces source code statistics (e.g., SLOC for CMS-2 and direct code,
source statements in DDs and SY SPROCS), a keyword report, and Halstead and
M cCabe complexity metrics.

a) Usethesetoolsto acquire a profile of all code segments for which trangdlation is
considered. This includes identifying the quantity of direct code, overlays, bit-leve
manipulations, dead code, complex code, and 10 operations. Dead code should
removed. Complex code can be translated but is a strong candidate for redesign.
Other categories will have to be dealt with manually.

b) Visually examine the impact of executive and common service routines (e.g.,
peripheral devices, debugging aids, data extraction capabilities).
Callsto service routines will not translate with translators.
Determine how to handle replacement or translation of the executive operating system.

Use of ESRs should be evaluated to determine the most appropriate replacements for
operating System services or run-time System services.

Consider replacing CSRs with common Ada libraries (e.g., math packages).
Expect to possibly do some reengineering before translation and to do reengineering afterwards.

Reengineering of CM S-2 can increase the percentage of translatable code. Extraction
or isolation of low-level segments and other non-translatables from otherwise
trandlatable segments will facilitate the tranglation process.

View 10 as an area that needs complete redesign.

Trandators will mark and bypass all low leve 10.
All CMS-2 10 programming is low-levd.

Make a cost estimate for translating your CMS-2 system.

10. Evaluate cost-schedule-quality tradeoff for translation versus redesign (See Figure 5-1).

Thiswill involve answering questions such as, do I: use as-is, trandate, redesign the
project for new technology and a new language, or start an entirely new project at the
requirements phase.

5-2

11. Do not translate a CM S-2 system that does not execute correctly in CMS-2.

Problemsin theinitial system will transfer and will be compounded by translation .

12. If major enhancements are scheduled to the existing software strongly consider redesign.

13. When a substantial amount of new code will be written it probably makes more sense to redesign
and rewrite rather than to continue with the legacy design.

14. Do not do trandate unless there is strong time and money commitment from the sponsor.
15. Trandlate stand-alone algorithms.

Automatic trandation is wel suited for trandating stand-alone algorithms that are free
of direct code (e.g., Kalman filters)

16. Be careful about pilot testing on project code for examining translation feasibility

Results may underestimate the effort. For example, when translated Ada code is
compiled, counting the initial set of compilation errorsis not an accurate indicator of
the magnitude of the effort required to achieve correct compilation. Many compiler
errors may betheresult of afew problems or after fixing thefirst set, new ones may
appear. Also, obtaining correct compilation is much easier than achieving correct
execution in Ada.

RECOMMENDATIONS TO PROJECT MANAGERS AFTER DECIDING TO USE TRANSLATOR
TECHNOLOGY

1. Haveyour experts on board from the start of the translation process.

This minimally includes your CM S-2 application expert and Ada expert. Also, include
in your schedule, timefor your software engineersto learn how to use the trandators
and analysis toals.

2. Trandateto Ada 95.

Use one of the three trandlators evaluated that translate CMS-2 to Ada. Compile with
an Ada 95 compiler because it includes the standard mathematical functions and
supports additional software engineering capabilities (e.g. object oriented design).

3. Sdect atrandator based on the tranglator profiles. See Section 3.

4. Consider CMS-2 reengineering to diminate overlays, direct code, and to simplify procedures that
areoverly complex. CMS-2 analysistools listed in Table 2-1 will be helpful.

Thiswill improve the quality of the translated Ada and the percentage of CMS-2 that is
trandatable.

5. Reengineer to diminate bit manipulation .

5-3

Bit manipulation in CM S-2 source code should be analyzed to determine why it is
being done. It may be unnecessary on the new target. For example, if the new target
platform were the Global Command and Control System (GCCS) the same capability
may already be handled by the core services. It may also be unnecessary if it is being
done to conserve memory, and the new target is a virtual memory computer or has
fewer memory constraints.

6. Useanalysistools:

a) CMS-2analysistools (e.g., CMS-2 Source Code Metrics Generator, CM S-2 Source Code
Design Analyzer)

b) Adaquality analysistools (e.g., Ada-ASSURED, L ogiscope, AdaMat, AdaQuest)

C) Adareengineering tools (e.g., Reengineering Toolkit by Rational and Hyperbook by
CCCC)

The Reengineering toolkit and Hyperbook were not used in the translator evaluation.

7. Decidein advance whereto recertify.

If the CM S-2 software is reengineered then the CM S-2 software should be recertified before
trandation. The Ada must be certified. Doing it thisway will reveal any problems more
quickly.

RECOMMENDATIONS TO THE NAVY FOR ADVANCING TRANSLATOR TECHNOLOGY

1. Poll managers of deployed CM S-2 systems.

Thiswill assist decision-making with regard to whether to continue funding CM S-2
trandator development and maintenance and whether to fund development of CM S-2
“direct code’ trandation.

Ask managers of deployed CM S-2 systems the following questions:

a) How many lines of CMS-2 code and how many lines of direct code are therein
your system?

b) What are your intentions with your CM S-2 system over the next five years?

I. Use“asis’?,

Il. Useautomatic trandlation from CMS-2 to Ada 95, to C++ or to another high-
level programming language? If so, to which language?

I1l. Redesign and rewritein a Ada 95, C++ or another high-level programming
language? If so, which language?

5-4

2. Support development of Ada quality improvement tools.

These tools are useful for improving the quality of translated Ada code as well as the
quality of legacy Ada code (e.g., removal of GOTO statements,, removal of dead code,
conversion of global objects to local objects, eimination of subprogram side effects,
creation of meaningful types, creation of meaningful names, and repartitioning code
into packages). The user community for these capabilities is more than just CMS-2 to
Ada projects. These quality improvements are needed by projects that use Ada
generated by transators whose input is alanguage other than CMS-2 aswell as
projects that use poorly written Ada programs. Most of these improvements are not
provided by existing tools.

3. Support transglator improvements that improve the quality of Ada produced.

These are improvements that do not hinder the use of existing CM S-2 test designs and
test data. The tranglation approaches used by the three trandators was to not make
significant structural modifications to the Ada code produced. This allows CMS-2 test
designs and test data to be applied to the translator-produced Ada. Henceit easier to
demonstrate functional equivalence. Examples of these improvements include,
removing unnecessary context clauses, removing the “use clause’, producing code that
is target-independent, and other improvements described in recommendations to
trandlator vendors.

4. Perform in-depth analysis of MTASS compilation errors.

During Stress Testing, translated MTASS QA tests were compiled and checked for
errors. Time permitted only a high-level examination of the compilation errors. A
more in-depth examination is needed to determine the spectrum of errors and the effort
required to obtain correct compilations. Information gathered from this analysis will
help trandlators generate higher quality Ada programs.

5. Deveop trandation cost schedule models.

These are needed to assist the project manager in estimating translation cost and time.
Based on parameters such as project size, complexity, and remaining life cycle, a
project manager can decide whether to translate or redesign in Ada.

6. Deveop methodology to replace CM S-2 overlays and bit manipulations (automated or manual).

Some CM S-2 constructs, such as overlays and bit manipulations, do not translate or
trandlate awkwardly. This methodology will substitute non-translatable CM S-2 with
CMS-2 code that is trandatable.

7. Consider the cost saving benefits of redeveloping or reengineering a collection of applications as
awhole.

5-5

When a collection of applications within a domain is to be transported, an opportunity
may exist to substantially reduce the transportation cost of the collection as a whole
compared to the cost of transporting each application individually. Cost savings may
be achieved by reengineering in accordance with different software architecture
principles such as client-server or object-oriented if multiple applications can use the
products of the effort. Cost savings can also be achieved by developing or using
domain-specific components which may be shared by multiple applications.

8. Consider developing a decision-making strategy based on product quality and business value
for determining what CM S-2 applications to continueto use “asis’ in CMS-2, trandateto
Ada, discontinue using the product, or redesign/rewritein Ada. *

Sneed (1995) suggests a metrics-based approach in which applications are ranked
according to their business value and technical quality. Technical quality isrdated to
such things as complexity, modularity, testability, understandability, and availability of
meaningful documentation. Business value is importance to the Navy. Technical
quality and business value are assigned numerical scores. Figure5-1isavisual
framework for making reengineering decisions. Thefollowing is one high-leve

decision strategy based on these rankings. The letters below are the quadrant |ettersin
thetable.

a) Continuetouse CMS-2 “asis’ until obsolete (for example, a better product takes
its place or UYK computers are no longer used)

b) Redesign and rewritein Ada

c) Discontinue using product

d) Trandateto Adaand reengineer for maintainability

1 The 84 QA tests used for stresstesting, Appendix B, liein the low quality, high value
quadrant. We were able to significantly improve the quality of QA9 with a redesign and
rewritein Ada 95. See Appendix C, Ada 95 QA9: Reengineering a mixed-mode math test
in Ada 95.

5-6

High quality, Low quality,
low value high value
Technical
quality a b
c d
Low quality, High quality,
low value high value
Business value

Figure 5. -1. High-level strategy: translate, reengineer, both, or discontinue

RECOMMENDATIONS TO TRANSLATOR VENDORS

ALL VENDORS
1. Minimize global interfaces/declarations.

The only declarations that should appear in the visible part of a package specification are
those objects and services that are required for use by clients of the package. In the case of a
monoalithic package like the APL Qa9qglook package, the only entity required by an external
client is "procedure Driver." Qa9qglook is the Ada package produced by the APL translator
when trandating QA9 during Quick Look (Appendix A). All of the other declarationsin the
specification of package Qa9qglook are services of other clients in package Qa9qglook. They
should not appear in the specification of Qa9qlook. Superfluous visibility is confusing.

2. Avoid use of nonstandard or proprietary math libraries.

5-7

The APL and CCCC trangdlators produced source code that relies on nonstandard or
proprietary math libraries. The TRADA trandlator generated completely portable code, but
failed 82 tests due to Ada 83's lack of an exponentiation operator with a floating point
exponent. Ada 95 contains Ada.Numerics.Generic_Elementary Functions package (1SO,
1995) which contains the math functions required for the Quick Look tests. The functionsin
this package should be used to the exclusion of all other math functions when they meet
accuracy and efficiency requirements. APL used the Sun math library, CCCC used the VAX
math library and TRADA did not use a math library.

3. Consider using unsigned integers with modular types.

Each of the trandators defined a number of unsigned integer types or subtypes in their
predefined packages. The Ada 83 standard did not support unsigned integers, however, Ada
95 does in the form of modular types (ISO, 1995). Thetranslator developers should consider
replacing the existing definitions with definitions using modular types. The following code
fragment illustrates this capability.

package Unsigned_Integer is
type UL is nod 2**1;
type U2 is nod 2**2;

type U32 is nod 2**32;
end Unsi gned_I nt eger;

4. Produce portable Ada code.

Thetrandators should be "parameterized” for specific targets (OS, computer, and compiler)
or for portability, and should not necessarily target the UYK architecture. CCCC and
TRADA produce UYK-oriented Ada code that will only run unmodified using VAX Ada.
For example, for QA9, TRADA produced a floating point number that was too large for a
Sun but not for a VAX.

5. Thoroughly test translators using the MTASS test suite

Thetrandator evaluation team found many translator bugs when using MTASS during stress
testing. Vendors should trandlate the entire M TASS test suite and try compiling the Ada
produced using an Ada 95 compiler.

APL
1. Avoid monolithic packages.

5-8

Make better use of Ada's package concept. Among its benefits is its use as a modularization
mechanism. Single large packages are more difficult to comprehend and maintain than
several smaller compilation units *.

2. Eliminatethe“use clause’.

Rather than the “use clause”, a better solution is to make judicious use of package renaming
and the Ada 95 “use type clause’.? We recommend that APL and CCCC include a switch to
turn off “use clauses”.

CCcCC
1. Avoid access before e aboration.

Avoid calling subprograms before they are daborated. The module structure generated from
the CCCC trandator is one in which all of the code for a program which is not included in
“PREDEFIN.ADA” is declared somewherein asingle package. This approach imposes
limitations with respect to eaboration order and software maintenance. One problem is that
variables declared in package specifications cannot be given default values returned from
functions implemented in the body of that package.® Thisis referred to as access-before-
eaboration (1SO, 1995). Adaimplementations are required to be able to detect this condition
and raisethe program_error exception. This problem occurred in two places in the CCCC
QA9 program. One simple and straightforward solution is to avoid nested packages, perform
variableinitializations in the initialization section of the body, and to include "pragma
Elaborate Body;" (1SO, 1995) in the package specification.

It should be kept in mind that the APL and TRADA translators managed to generate a
correctly working version of QA9 without resorting to access types, addresses, or unchecked
programming. This demonstrates that these questionable techniques were unnecessary.

Additional Thoughts on the Use of Pointers

The CCCC trandlator uses access types extensively to deal with the overlay problem. In
CMS-2, when memory became tight, objects would share memory name space with other
objects. Thiswas a very dangerous practice, but necessitated by the severe limits on memory
during the 1970s and early 1980s. Programmers could change the value of any of the named
objects and the effect would be to change the value of all the named objects. Today memory
is very inexpensive and virtual memory modds are used by most hardware environment and
supported through most computer languages.

! See* Access before daboration”
2 See Appendix D, section D.4.1.

3 Instantiations of unchecked_conversion do not generate executable code in many cases. In those that do, they do
not depend on code implemented in the body of the unit in which they are instantiated.

59

Ideally, the translation process should resolve names for each of the objects so that each
object has a unique name space. In most languages this is achieved using a virtual memory
mode viathe stack. Here the physical address of an object will vary based on its
environment at the time the object was placed on the stack. If its valueisto be shared with
another object, it must be done explicitly via periodic assignment statements. The use of
stacks are considered very safe for safety-critical and mission-critical applications.

Most languages also provide a heap memory using pointers (i.e., access types). Thereare
certain operations such as list processing which are facilitated by pointers. The use of heap
memory requires additional memory management functions during real-time and is very
dangerous as memory can become easily fragmented requiring garbage collection.

Instead of resolving the dangerous consequence of overlays, the CCCC trandlator converts
the object to a pointer (access type) so that the name space of objects are overlaid in the
trandated environment. This necessitates the use of unchecked-conversion as each access
typeis likely to have a different type with different legal values.

The advantage of using pointersis that object name space resolution does not have to be
performed automatically. On occasion a CMS-2 programmer would take advantage of the
side-effects of overlays allowing the change of value of one object to also change the value of
other objects. Thisis bad practice, but frequently done. Hence, the use of pointers will
provide a correct solution in the face of poor programming practices. Unfortunately, the
trandated codeis not easily understood nor maintained as it continues the legacy of bad
programming practices.

Perhaps for those situations where suspected side effects are used, the translators should
generate normal Ada objects with a comment to the effect:

“Inthe CMS-2 program, Object_A and Object_B pointed to the same memory location;
please check for side effects.”

2. Avoid monolithic packages.

Make better use of Ada's package concept. Among its benefits is its use as a modularization
mechanism. Single large packages are more difficult to comprehend and maintain than
several smaller compilation units. *

3. Eliminate superfluous context clauses.

The presence of superfluous context clauses (e.g., with Package Name) is confusing because
it implies that certain services are required by a client when, in fact, they arenot. This places
the unnecessary burden on maintenance personnd of proving that such services areirrdevant
to their maintenance tasks.

4. Eliminatethe“use clause’.

Eliminatethe“use clause’. A better solution is to make judicious use of package renaming
and the Ada 95 “use type clause’ . *

! See* Access before daboration”
! See Appendix D, section D.4.1.

5-10

RECOMMENDATIONS TO REENGINEERING TOOL VENDORS

Develop tools that will automatically or semi-automatically improve the quality of legacy Ada or
Ada produced by translators. Some examples of these capabilities are listed below. We are not aware
of existing tools that perform these operations on the Ada code.

Remove GOTO statements

All three trandators created Ada source with GOTO statements whenever the
corresponding CM S-2 source contained GOTOs. A capability is needed to automatically
remove GOTOs by producing functionally equivalent Ada that is maintainable. (METRC
should be used to detect the presence of GOTOs in CMS-2, which guarantees their
presence in the Ada.)

Remove dead code

Programs with dead code are confusing and difficult to maintain. A capability is needed
that automatically removes or flags dead code. (DESAN can be used to flag dead CM S-2
code for pre-trandation reengineering).

Convert global objects to local objects

Asthe CMS-2 COMPOOL construct is equivalent to the creation of global objects, all
tranglated code should be analyzed for placing objects at the appropriate location. A
portion of this should be done automatically. See next item.

Eliminate subprogram call side effects to global objects

All subprograms should operate on local objects only. Most CM S-2 procedures and functions
operate on global objects making side effect detection a very difficult task. Subprogram
calls should pass all affected objects as parameters, diminating the possibility of
dangerous side effects. This conversion could be done automatically. (DESAN can be
used to make scope change recommendations in the pre-translation CMS-2.)

Perform automated information hiding

A capability is needed to automatically push type definitions, variable declarations, and
subprogram declarations down to the appropriate level. Translators do not do a very good
job of producing Ada source that takes advantage of information hiding. For example,
variables and subprograms are sometimes declared in a package specification when they
are only used in the package body. A tool could automatically improve the information
hiding.

5-11

However, there are some valuable Ada reengineering capabilities provided by tools that exist
today that were not used during this evaluation. For example, the Rational Reengineering Tool Kit
provides a capability for 1) creating meaningful types, 2) creating meaningful object names and 3)
for repartitioning code into packages. CCCC’s Hyperbook processes Ada source code to produce a
collection of hyper-linked graphics and text that is viewable in aweb browser. This information
hel ps the programmer to more quickly understand the Ada source code. Proposed research using
these tools is discussed in Appendix E.

SUGGESTED TRANSLATION STEPS

We assume that the goal in translation is to produce correctly executing Ada software that is
maintainable. The steps of obtaining, installing, and learning to use the tools mentioned are not listed.
A description of the Ada analysis tools is found in Appendix E. Some were used in this experiment.

Inspect and Prepare CMS-2 Source Code

A.

Determine Feasibility of Tranglation by following the sub-steps below.

Count lines of CMS-2 and direct code using the CM S-2 Source Code Metrics Generator
(METRC). Visually examine codeto seeif direct code has equivalent CM S-2 functionality
in comments.

Gather complexity metrics. METRC produces M cCabe Cyclomatic and Halstead
Complexity metrics. Analysis can be on SYSPROC, SYSDD, or entire system.

Gather processing flow analysis data. The CMS-2 Source Code Design Analyzer
(DESAN) produces both long and short call trees. Analysis can be on SYSPROC, SYSDD,
or entire system.

Identify use of dead code, and scoping using DESAN.
| dentify use of overlays using METRC.

Examine use of executive and common service routines and other non-translatable
aspects. This step is done by visual examination, probably by using a text editor.

If possible, run Logiscope CM S-2 to further examine the quality of the CMS-2 code.
NRaD did not use the Logiscope CMS-2 capability. (The CMS-2 analysis capability isan
add-on to Logiscope that may be purchased. It produces Halstead, M cCabe and other
metrics.)

Consider using Clueto hep understand CMS-2 code. This prototype CMS-2 reverse
engineering tool produces data flow diagrams, control flow diagrams and reports that assist
the programmer in understanding CM S-2 source code.

2. |dentify CMS-2 Code Segments Suitable for Translation. Select segments based on:

5-12

f)
9)

b)

Minimal quantity of direct code (where equivalent CM S-2 does not exist in comments)

Minimal use of overlays, executive service calls, 10 to special devices, and other non-translatable
aspects
Low McCabe complexity scores (less than 20)

Visually examine code that has scores of greater than 20 to verify that it really is not too complex
to be maintainable. If translated, the complexity will be equivalent in Ada. For a description of
the McCabe Cyclomatic Complexity metric see Appendix D.

Stand-alone algorithms

Distinguish easy from difficult-to-translate pieces.

Consider the costs and benefits of separating direct code and executive calls from otherwise
trandlatable code.

Reengineer CM'S-2 Source Code

Where cost-effective, reengineer CM S-2 to separate direct code and executive calls from
otherwise translatable code.

Convert direct code to CMS-2 high leve in preparation for translation. Manually do this for
direct code where equivalent CM S-2 is contained in comments. (All direct code and assembler
code that is not converted to high leve in preparation for translation will require reengineering of
thetranslated Ada source). A currently unfunded prototype tool, the Synetics Assembler Design
Extractor, was developed with the goal of translating 80% of direct codeto CMS-2. Thetool was
proven to be immature and not production ready.

Reduce the scope of variables based on information provided by DESAN.

Remove dead code identified by DESAN.

Decide whether to test/ recertify the reengineered CM S-2 system, or to wait until after translation
to certify the Ada system.

Translate and Compile

1.

Sdlect atrandator (APL, CCCC, TRADA) based on the profiles provided in Section 3 and
trandate candidate segments. Data provided in results appendices of this report may hep with
translator selection.

Compile trandated code using an Ada 95 compiler (eg., GNAT).
Make changes required to achieve compilation.

See Results of Quick Look Inspection, Appendix A, for typical compilation errors expected
for each trandlator.

Reengineer and Improve the Quality of Ada Source Code

1.

Reengineer the Trandlated Ada

5-13

Make changes to Ada source code required to achieve correct execution. For a
deployed system, recertificationis required. See Appendix F, for typical compilation
and execution errors to expect with each trandlator. Improvements in the use of
naming conventions, dimination of intermediate variables, use of standard packages,
memory management, and performance should be made. See Appendix M for a
discussion as applied to the MK2 CM S-2 code sample for translated Ada source and
reengineered Ada source.

2. Improvethe Quality of Correctly Executing Ada Code

a) Examine quality of Ada code by using tools like Ada-ASSURED, Logiscope, Adamat, and
AdaQuest.

b) Bring Ada source codeinto compliance with established programming style guiddines by using a source
code formatter and standards enforcer such as Ada-ASSURED.
¢) Manually make other changes so that code conforms to guidelines (e.g., remove GOT Os).

3. Consider use of Reengineering Toolkit (RTK) to Restructure Ada Code.

The RTK is used to increase the quality of Ada code through restructuring. It is available
from Rational. 1t was not used by NRaD. See TableL-2 for a description.

4. Try using Hyperbook to automatically produce documentation from Ada source code.
Hyperbook was not used by NRaD. See TableL-2 for a description.

5-14

6. REFERENCES

Banker, R.D., S.M. Datar, C.F. Kemerer, and D. Zweig, November 1993. “Software Complexity
and Maintenance Costs’, Communications of the ACM, vol. 36, no.11.

Cohen N.H., 1996. Ada as a Second Language, McGraw-Hill, New York, New Y ork.

Computer Command and Control Company 1996. “CMS-2 to Ada Transformer User Guide’,
Version 6.1, Philaddphia, Pennsylvania.

Computer Sciences Corporation 1994. “Software User’s Manual For The CMS-2 to Ada
Trandator”, San Diego, California.

Fleet Combat Direction Systems Support Activity (FCDSSA) 1993. “Revision Test Plan and
Procedures (RTPP) for MTASS, (U) MT2Y-TPL-SQA-T5524, RO6CO.

GrammaT ech Incorporated 1995. “ Ada-ASSURED 3.0 User Guide & Reference Manual 7,
Ithaca, New York.

Halstead M.H. and V. Schneider, August 1980. “Sef-Assessment Procedure VI1”,
Communications of the ACM, val. 23, no. 8.

Halstead M .H., 1977. Elements of Software Science, Elsevier, New York, New Y ork.
|SO/IEC 8652:1995, “ Ada 95 Reference Manual”.

Jones C, 1991. Applied Software Measurement Assuring Productivity and Quality, McGraw-
Hill, New York, New York.

Jorgenson P.C., 1995. Software Testing A Craftsman’s Approach, CRC Press, New York, New
York.

Naval Sea Systems Command. 13 Dec 91. “User Handbook (UH) for CMS-2 Compiler”,
NAVSEA 0967-LP-598-8020, Revision 4. Washington, D.C.

NCCOSC RDT&E Division. 14 Aug 96, “CMS-2 to Ada Tranglation Evaluation Plan”, San
Diego, California.

Software Productivity Consortium December 1992. “ Ada Quality and Style: Guiddines for
Professional Programmers” , SPC-91061-CMC, Version 02.01.01, Herndon, Virginia.

Sneed H.M., 1995. “Planning the Reengineering of Legacy Systems’, |EEE Software, vol. 12,
no. 1.

United States Department of Defense, 1983. “Reference Manual for the Ada Programming
Language’.

6-1

7. ANNOTATED BIBLIOGRAPHY

TRANSLATING INTO ADA

Computer Command and Control Company . 1996. “CMS-2 to Ada Transformer User
Guide’, Version 6.1, Philadephia, PA.

This document describes the use of the CMS-2 to Ada Transformer to create Ada code from
corresponding CMS-2 code. It includes installation instructions, a description of the
transformer, a description of the transformation process, an example, and a list of known
problems.

Computer Sciences Corporation. 1994. “ Software User’s Manual (SUM) for the CMS-2 to
Ada Trandator,” VAX Version, San Diego, CA.

This document includes detailed execution procedures for executing the VAX-based TRADA
trandator, alist of translator generated error messages, the output summary file produced by
TRADA, trandation strategies, and a sample trandation.

Computer Sciences Corporation. 1996. “CMS-2 to Ada Trandlation Study Final Report”, San
Diego, CA.

This report describes the results of a study to translate approximately 14,000 source lines of
code of CM S-2 and direct code from the Advanced Combat Direction System (ACDS) Block 0
program to Ada using the TRADA translator. The purpose of the study was to determine the
effort required to perform the translation, to develop a methodology for conducting translations,
and to obtain empirical data that would provide a basis for estimating the translation of other
similar code.

Sampson, C. “Trandating CMS-2 to Ada.” Computer Sciences Corporation, San Diego, CA.

This paper is a description of TRADA trandator. It emphasizes the trandation used and the
reasons for using them. It describes the CM S-2 dialects and discusses some of the major
tranglation problems.

OTHER REENGINEERING PAPERS

Adolph, W.S. 1996, “Cash Cow in the Tar Pit: Reengineering a Legacy System,” |EEE
Software, vol. 13, no. 3, pp. 41-47.

This paper imparts lessons learned on a legacy-replacement project a not straight forward
activity. It contains information valuable to the software manager who is considering the re-
engineering of alegacy system.

7-1

Aiken P., A. Muntz, and R. Richards 1993. “ A Framework for Reverse Engineering DoD
Legacy Information Systems,” Proceedings: Working Conference on Reverse
Engineering, May 21-23, 1993, pp. 180-191.

This paper reports on a framework to reverse engineer selected DoD legacy information
systems. The approach was developed to recover business rules, domain information, functional
requirements, and data architectures, largdy in the form of normalized, logical data models. Ina
pilot study, the authors reverse engineer the data from diverse systems — ranging from home
grown languages and database management systems developed during the late 1960’ s to those
using high order languages and commercial network database management systems.

Arango G., |. Baxter, P. Freeman and C. Pidgeon 1986. “TMM: Software Maintenance by
Transformation,” |EEE Software, val. 3, no. 3, pp. 27-39.

This paper describes a method called transformation, used to recover abstractions and design
decisions made during implementations.

V.R. Basilli 1990. “Viewing Maintenance as Reuse-Oriented Software Development ,” |EEE
Software, vol. 7, no. 1, pp. 19-25.

This paper describes a high-leve organizational paradigm for development and maintenance,
with it, an organization can learn from development and maintenance tasks and then apply that
paradigm to several maintenance process models. Associated with the paradigm is a mechanism
for setting measurable goals that let you can evaluate the process and product, and learn from
experience.

Beck J. 1993. “Program and Interface Slicing for Reverse Engineering,” Proceedings.
International Conference on Software Engineering 1993, pp. 509-518.

This paper shows how program slicing techniques can be employed to assist in the
comprehension of large software systems. It shows traditional slicing techniques at the statement
level, and a new technique, interface dlicing, at the module leve.

Bennett K. 1995, “Legacy Systems: Coping with Success,” |EEE Software, vol. 12, no. 1, pp.
19-22.

This paper discusses technical and nontechnical challenges with migrating and updating
legacy software. Challenges range from justifying the expense, to dealing with offshore
contractors, to using program-understanding and visualization techniques. The paper provides a
summaries of five articles on legacy systems.

7-2

Biggerstaff T. 1989 “Design Recovery for Maintenance and Reuse,” |EEE Computer, vol. 6,
no. 4, pp. 36-49.

This paper describes the steps of the design recovery process, the properties of design
recovery, a model-based design recovery system, and the M CC prototype design recovery system
called Desire Version 1.0. The systemisintended to explore only that aspect of design recovery
that does not depend on the domain model. The paper also discusses commercial reverse
engineering tools and related research.

Bray, O. and M.M. Hess 1995. “Reengineering a Configuration Management System,” |EEE
Software, vol. 12, no. 1, pp. 55-63.

This paper describes how developers at Sandia National Laboratories successfully
reengineered a 30 year-old system whose source code and documentation was incomplete, into a
client-server application.

Britcher R.N. and J.J. Craig 1986. “Using Modern Design Practices to Upgrade Aging
Software Systems,” |EEE Software, vol. 3, no. 3, pp. 16-24.

This paper describes how IBM Federal Systems Division successfully applied its software
engineering principles to modify 100,000 lines of 20 year old Federal Aviation Administration
air traffic control system code.

Bryne, E.J. 1992. “ A Conceptual Foundation for Software Re-engineering,” Proceedings.
Conference on Software Maintenance 1992, pp. 226-235.

This paper presents a conceptual foundation for software re-engineering. Thefoundationis
composed of properties and principles that underlie re-engineering methods, and assumptions
about reengineering. A general modd of software re-engineering is established that is useful for
examining re-engineering issues such as the re-engineering process and re-engineering strategies.

Bryne, E.J. and D.A. Gustafson 1992. “ A Software Re-engineering Process Modd ,”
Proceedings. International Computer Software & Applications Conference 1992, pp.
25-30.

This paper describes a process modd of software re-engineering. This mode focuses on the
breadth of the process by identifying necessary process phases and possible tasks. Variations
within the process are discussed

Choi S.C. and W. Scacchi 1990. “Extracting and Restructuring the Design of Large
Systems,” |EEE Software, vol. 7, no. 1, pp. 66-71.

This paper describes an approach to reverse engineering that first maps the resource
exchange among modules and then derives a hierarchical design description using a system-

7-3

restructuring algorithm. Thefocusis on extracting the structural and, to alesser degree,
functional and dynamic properties of large systems — systems composed of modules and
subsystems. This processis equivalent to reverse-engineering a system-level design description.

DeBaud J. and S. Rugaber. “ A Software Re-Engineering Method using Domain Moddls,”
Proceedings of the International Conference on Software Maintenance 1995, pp. 204-
213, College of Computing, Georgia Institute of Technology.

This paper introduces a method that addresses problems associated with reengineering
technology based on program analysis methods such as parsing and data flow analysis. An
executable domain mode is constructed for understanding the context of a program and an
object-oriented framework is used to record that understanding.

Hartmann J. and D.J. Robson 1990. “Techniques for Selective Revalidation,” |EEE
Software, vol. 7, no. 1, pp. 31-36.

This paper describes a method to revalidate modified software while minimizing the time and
cost involved in maintenance testing by using a systematic automated approach.

Hauser P.A., M.G. Pleszkoch, R.C. Linger and A.R. Hevner 1990. “Using Function
Abstraction to Understand Program Behavior,” |EEE Software, vol. 7, no. 1, pp. 55-
63.

This paper describes how you can understand programs by abstracting program functions.
This requires you to determine the precise function of a program or program part, which explains
exactly what it doesto data in all possible circumstances.

Johns Hopkins University, Applied Physics Laboratory. 1995. “CMS-2 to Ada Trandation
Tools’, Laurd, Maryland.

This report describes the development of a set of tools designed to convert a program written
in CMS-2 into a program written in Ada having the identical functional performance as the
original. The core of thetool set is agroup of programs that operate on CM S-2 source code and
inaseries of passes trandate to statements or statement blocks, as wdl as their associated data
elements, into a functionally equivalent set of Ada statements and data. In so doing, the
syntactic differences in the two languages are resolved, yidding a code structure which is
compilable with rdatively minor adjustments. The report includes instructions for running the
APL trandator.

Letovsky S. and E. Soloway 1986, “Deocalized Plans and Program Comprehension,” |EEE
Software, vol. 3, no. 3, pp. 41-49.

7-4

The paper presents examples from protocol studies of expert programmers, illustrating certain
common kinds of comprehension errors that can occur in the reading of code during
maintenance. These errorsinvolve programming plans which are ddocalized — that is, spread
far and wide in thetext of the program. Strategies are described for preventing comprehension
failures due to ddocalization.

Manzdla, J. and B. Mutafeija 1992 “Concept of the Re-engineering Life-Cycle,”
Proceedings. Second International Conference on Systems Integration, June 15-18,
1992, pp. 566-571.

This paper presents the status of work being done at Grumman on integrating several
development concepts into asingle life-cycle. This paper defines an extended software
development life-cycle that addresses both forward and reverse software development. Thisis
the first and most crucial step in defining a disciplined and repeatable software devel opment
process.

MIL-HDBK-SRAH (VERSION 2.0). 1995. “Software Reengineering Assessment
Handbook” .

This handbook provides guidance for conducting technical and economic assessment of
software reengineering strategies to determine whether to reengineering legacy software, retire
it, redevelop it, or to continue to maintain it asis. The handbook documents a software
reengineering cost/benefit methodology that includes a technical process, economic process, and
management decision process.

Merlo E., P.Y. Gagne, J.F. Girard, K. Kontogiannis, L. Hendren, P. Panangaden and R. De
Mori 1995. “Reengineering User Interface,” |EEE Software, vol. 12, no. 1, pp. 64-73.

This paper describes how a partially automation of the process of turning a character based
user interfaceinto a graphical interface.

Raglund B. and M. Olsem “ Maintain Legacy Software or Reengineer? CrossTalk, vol. 9,
no. 4, pp. 6-10.

This article provides a road map that identifies what an organization needs to reengineer a
legacy software system. The road map is a 9-step reengineering process. Definitions for
reengineering terms is provided.

Rich C. and L.M. Wills 1990. “Recognizing a Program’s Design: A Graph-Parsing
Approach,” |EEE Software, vol 7, no 1, pp. 82-89.

This paper describes how a prototype system automatically finds all occurrences of a given set
of programming structures (cliché) and builds a hierarchical description of the program in terms
of theclichéit finds.

7-5

Rugaber S., S.B. Ornburn, and R.J. LeBlanc, Jr. 1990. “Recognizing Design Decisions in
Programs,” |EEE Software, vol. 7, no 1, pp. 46-54.

This paper describes how to derive a characterization of design decisions based on the
analysis of programming constructs. The characterization underlies a framework for
documenting and manipulating design information to facilitate maintenance and reuse activities.

Scandura J. M. 1994. “Converting Legacy Code into Ada: A Cognitive Approach,”
Computer, vol. 11, no. 2, pp. 55-61.

This article reviews current software reengineering tools. It describes a new cognitive
approach to system reengineering based on code comprehension tools that provides
visual representation of code containing less “cognitive noise.” This approach lets
programmers better understand the system design. The approach integrates code
comprehension tools with current reengineering methodol ogies to create an
integrated reengineering workbench for converting legacy code into newer languages
such as Ada or C/C++.

Sneed H. M. 1994. “Planning the Reengineering of Legacy Systems,” |EEE Software, vol.
11, no. 1, pp. 24-34.

This paper describes a five-step reengineering planning process, starting with an analysis of
the legacy system and ending with contract negotiation. The steps are project justification,
portfolio analysis, cost estimation, cost-benefit analysis, and contracting.

Software Productivity Consortium. 1989. “ Ada Quality and Style Guiddines for
Professional Programmers’, Van Nostrand Reinhold, New Y ork.

This book helps the computer professional produce higher quality Ada programs. Guideines
consist of a concise statement of the principles to be followed and rationale for why the guiddine
isimportant. These guidelines are probably the most widely accepted and used Ada guidelines.

Software Productivity Consortium 1995. “ Ada 95 Quality and Style Guiddines for
Professional Programmers’, Version 01.00.10, SPC-94093-CMC.

A book of specific guiddines helping the computer professionals produce higher quality Ada
95 programs.

Wong K., S.R. Tilley, H.A. Muller and M.D. Storey 1995. “Structural Redocumentation: A
Case Study,” |EEE Software, vol. 12, no. 1, pp. 46-54.

7-6

This paper describes a method of reverse engineering through redocumenetaiton that
promises to extend the useful life of large systems.

7-7

APPENDIX A: RESULTS OF QUICK LOOK INSPECTION

The purpose of the Quick L ook I nspection was to ensure that software products and
resources were ready for subsequent phases. During this phase, a CM S-2 sample program of
approximately 5000 lines of code was translated by the three trandators. Manual modifications
were made to the translated code until compilation was achieved. This phase ensures that
required computers are accessible, and required software products including trandators are
installed and execute correctly.

QA9 SELECTED AS SAMPLE

We chosethe CMS-2 QA9 program as our sample program. This program is alarge self-
checking test program designed to verify the MTASS CM S-2 compiler’ s ability to generate
arithmetic code that provides acceptable results when running in an AN/UYK-43 MIL-STD
computer. QA9 heavily uses arithmetic capabilities that are critical to every programming
language and are generally fairly comparable between languages. QA9 has 5 sections:

exponentiation
multiplication
division
addition
subtraction

.\) .\) .\) .\) .

Since CM S-2 supports legal arithmetic with mixed types, many mixes are checked by the test
(for example, fixed-point * floating-point / integer). 1f the result is within an acceptable range for
the computer, a UYK-43 in this case, the test passes.

We sdlected QA9 because :

Ada code after tranglation could be easily mapped back to the original CM S-2.
The mathematical functionality is common and critical to each language.

No trandglation of direct code (embedded assembly) was involved.

It contained approximately 5000 lines of code.

We believed we could achieve successful execution after translation.

A team member was very familiar with QAO9.

NN N N N T

A-1

OVERVIEW OF STEPS
The Quick Look I nspection phase includes the following steps:
1. Compile, link and execute CMS-2 sample

CMS-2 QA9 with test harness was compiled, linked and executed on a VAX
11/785 computer using MTASS. This step ensured that the CM S-2 code compiled
correctly and the chosen sample would execute. Most important, this step
established a basdine to verify valid execution of the translated Ada sample.

2. CMS-2 metrics gathering and analysis

Two CMS-2 analysis tools were executed: CM S-2 Source Code Metrics Generator
(METRC) and CM S-2 Source Code Design Analyzer (DESAN). METRC
produced SLOC counts, M cCabe cyclomatic complexity and Halstead complexity
metrics. DESAN produced metrics related to the suitability for translation.

3. Trandation to Ada using three trandators

The CMS-2 QA9 sample was input to the three trandlators to produce trandlation
listings which included the Ada source and the CM S-2 non-trandatables. The
TRADA and CCCC trandators executed on a VAX 11/785, while the APL
trandator ran on a Sun Sparcstation.

4. Compilation of trandated Ada

The Ada source produced by the TRADA and CCCC translators was compiled
using the VAX Ada compiler and GNAT (Sun) compilers. The Ada source code
produced by the APL translator was compiled using Sun Ada and GNAT (Sun)
compilers. Compilation errors were recorded and the Ada source was reengineered
to achieve successful compilation.

5. Examination of compiled Ada source

Analysis tools were used to examine the compiled Ada source code. Thesetools
included a SLOC counter, Logiscope, and Ada-ASSURED. Ada-ASSURED was
used to examine conformance to Software Productivity Consortium Ada quality
and style guiddines. Logiscope produced McCabe and Halstead complexity
metrics.

Theremainder of this appendix reports these results.

COMPILATION RESULTS

Compilation was attempted on the translator generated Ada QA9 programs. During this
phase, the translator developers were given the opportunity to fix translator problems. The APL
trandator produced one package specification and body. The CCCC tranglator produced a

A-2

monolithic package containing nested packages. TRADA produced multiple package
specifications and bodies (Table 3-1 provides translator profiles). All required some
modification to compile. Table A-1 to Table A-4 lists the compilation errors for the Ada code
generated by the three translators. Only the GNAT compilation errors are presented, the results
for the other compilers are very similar. These tables show the compilation errors produced
when the original versions of the translators were used before any translator fixes were made.
Included in these figures are the program unit, the problem code, explanation of the problem, the
manual changes needed to achieve compilation, and any remedies provided by the translator
developers to eliminate compilation errors. The right hand column shows how problems were
fixed by the developers. If the column contains a*® no”, the problem was not fixed at the time of
this writing.

APL

Table A-1 and Table A-2 list the compilation errors for the APL-generated Ada QA9 package
specification and package body respectively. Later versions of the translator fixed all of the
errors in the package specification and all except two in the package body. The syntax errors
associated with the package specification included undeclared variables, undefined types, use of
Ada reserved words, constraining strings in the parameter list and others. The errors associated
with the package body included undefined variables, use of Ada reserved words, and others.

CCccC

The Ada QA9 produced by the CCCC trandlator required manual modifications of the Ada
code to compile. The codeinitially cleanly compiled with the VAX Ada compiler but porting it
to the Sun workstations using the Sun Ada and the GNAT compiler produced errors. Table A-3
lists the compilation errors produced in the CCCC QA9 Ada body. The table also shows the
manual fix made and whether alater version of the tranglator corrects the problem. No
modifications to the specification were required.

TRADA

The Ada QA9 produced by the TRADA trandlator required manual modifications to compile.
The code initially cleanly compiled with the VAX Ada compiler. Later compilation on the Sun
workstations using Sun Ada and the GNAT Ada compiler produced some errors. Table A-4 lists
the compilation errors produced in the Ada TRADA QA9 specification. No modifications to the
body were required.

A-3

Table A-1. APL QA9 Package Specification Compilation Error List Using the GNAT Compiler - 1

Program Problem Code Problem Manual Reengineering to Fixed in Later Versions by
Unit Compile Translator Developers

global vawdl : integers0O integersO not declare integers0 in the vawdl :INTEGERS32;

declaration declared in the basic_defns package
basic_defns package

global vawd3 : integers0 integers0 not declare integers0 in the vawd3 :INTEGERS32;

declaration declared in the basic_defns package
basic_defns package

global fst: fs5_type fs5_type is undefined | TYPE fs5_type IS (Dsmssd, Inact, | type fs5_tvla_type is (DSMSSD,
declaration Wait, Run, Crash); INACT, WAIT, RUN, CRASH);

global type tv8z_ptris tv8z_rec is undefined | type TV8Z_REC is record type TVBZ_PTR is access
declaration | access tv8z_rec nul WORD_ARRAY(0..(8-1));

ull;
end record;

global type tv32z_ptris tv32z_recis type Tv32Z_REC is record type TVBZ_PTR is access

declaration | access tv32z_rec undefined nul WORD_ARRAY(0..(8-1));
ull;
end record;

global type vs2_type is Allis an Ada type vs2_type is (z_ALL, NONE) type vs2_type is (ALL_D, NONE);
declaration | (ALL, NONE) reserved word

procedure (vhead : in constraint not (vhead : in STRING); (vhead : in STRING);
Qthead STRING(1 .. 60)); allowed for string.

procedure (vhead?2 : in constraint not (vhead?2 : in STRING); (vhead2 : in STRING);
Qttext STRING(1 .. 60)) allowed for string.

A-4

Table A-1.

APL QA9 Package Specification Compilation Error List Using The GNAT Compiler - 2

Program Problem Code Problem Manual Reengineering to Compile Fixed in Later Versions by
Unit Translator Developers
procedure (vhead?2 : in constraint not (vhead2 : in STRING); (vhead2 : in STRING);
Qttext0 STRING(1 .. 60)) allowed for string.
procedure vmtestno : in constraint not vmtestno : in STRING; vmtestno : in STRING;
Qttests STRING(1 .. 4); allowed for string.
procedure procedure constraint not procedure QTISEXPH (vhisexl : procedure QTISEXPH (vhisexl : in
Qtisexph QTISEXPH (vhisex1 | allowed for string. in STRING; vhisex2 : in STRING); STRING; vhisex2 : in
:in STRING(1 .. 60); STRING);
vhisex2 : in
STRING(1 .. 60))
procedure for tvl6a use at not used anywhere so comment --OVERLAY--for tvl6a use at
Qale System."+"(tv8a'add line out System."+"(tv8a'address,8);
ress,8)
procedure for tvl6ovr use at not used anywhere so comment --OVERLAY--for tvl6ovr use at
Qa%e tvled'address line out tvled'address;
procedure for tvla use at not used anywhere so comment --OVERLAY--for tvl6ovr use at
Qa%e thal'address line out tvled'address;
procedure for tv2a use at not used anywhere so comment --OVERLAY--for tv2a use at
Qa%e System."+"(System." line out System."+"(System."+"(tvla'address,

+"(tvla'address,512)
2)

512),2);

Table A-1

. APL QA9 Package Specification Compilation Error List Using The GNAT Compiler - 3

Program Problem Code Problem Manual Reengineering to Compile Fixed in Later Versions by
Unit Translator Developers
procedure for tv32a use at not used anywhere so comment --OVERLAY--for tv2a use at
Qa%e System."+"(tvl6a'ad line out System."+"(System."+"(tvla'address,
dress,16) 512),2);
procedure for tvda use at not used anywhere so comment --OVERLAY--for tv2a use at
Qa%e System."+"(tv2a'add line out System."+"(System."+"(tvla'address,
ress,2) 512),2);
procedure for tv64a use at not used anywhere so comment --OVERLAY--for tv64a use at
Qale System."+"(tv32a'ad line out System."+"(tv32a'address,32);
dress,32)
procedure for tv8a use at not used anywhere so comment --OVERLAY--for tv8a use at
Qa%e System."+"(tv4a'add line out System."+"(tv4a'address,4);

ress,4)

Table A-2. APL QA9 Package Body Compilation Error List Using The GNAT Compiler - 1

Program Problem Code Problem Manual Reengineering to Fixed in Later Versions by
Unit Compile Translator Developers
global i1 : TAQR_REC wrong declaration i1 : integers32 no
declaration
global i2 : TAQR_REC wrong declaration i2 : integers32 no
declaration
procedure | procedure QTHEAD(vhead | nconstrained vhead_t: STRING (1..60)| Procedure QTHEAD(vhead_t: in
Qthead 1in STRING) is subtype not allowed STRING) is
vhead_t: STRING; begin) -
begin vhead :=vhead t;
vhead_t :=vhead ; --
vhead t:=""; vhead*:="" & c2a_blanks(1..59) ;
return ; return ; --
end QTHEAD ; end QTHEAD ;
procedure IX1:=1Ix1 x+1; Ix1 is undefined Ix1,Ix2 , IX3: Removed Ix1
Qtset INTEGERS16
procedure taqgrct(xx_1).hmtn :=0 ; should be a string tagrct(xx_1).hmtn :="00" ; | taqrct(xx_1).hmtn := (others =>"");
Qttests

" vhead globally declared

Table A-2. APL QA9 Package Body Compilation Error List Using The GNAT Compiler - 2

Program Problem Code Problem Manual Reengineering to Fixed in Later Versions by
Unit Compile Translator Developers
procedure | Procedure QTSPTSW the goto target integrate this procedure procedure QTERRE is
Qtsptsw (vx2 :in integers32) is statements in this inside of procedure -
begin _ procedure resides QTERRE begin
case vx2 is outside of this vx1 = yxl +1;
when 14 => goto program unit. The case vx2 is
QTERRF14 ; type is also missing when 14 => goto QTERRF14 ;
when 15 => goto from the parameter. when 15 => goto QTERRF15 ;
QTERRF15; when 16 => goto QTERREL6 ;
when 16 => goto when 17 => goto QTERRE17 ;
QTERRE16 ; when 18 => goto QTERRE1S8 ;
when 17 => goto when 19 => goto QTERRE19 ;
QTERRE17 ; when others => null ;
when 18 => goto end case ;
QTERRE18 ;
when 19 => goto
QTERRE19 ;

when others => raise
INDEX_OUT_OF_RANGE ;
end case ;
end QTSPTSW ;

Table A-2. APL QA9 Package Body Compilation Error List Using The GNAT Compiler - 3

Program Problem Code Problem Manual Reengineering to Fixed in Later Versions by
Unit Compile Translator Developers
procedure taqgrct(xx_1).htmu :=0; should be a string taqgret(xx_1).htmu := "00"; tagrct(xx_1).hmtn := (others =>"") ;
Qttests
procedure 28 (5) (vhsynhed) := Incorrect vhsynhed(29..32) := vhsynhed(29..32) := vmtestno ;
Qtsynops vmtestno ; translation vmtestno;
procedure <<LOOP>> Ada reserved word <<first LOOP>> <<LOOP_D>>
Qtsynops
procedure vhtmu :=""; wrong number of vhtmu:=""; vhtmu:="";
Start spaces
procedure Z:=X**y; y is defined as typecast the floating Added the following function in the
Qaga. float. Ada can not exponent to integer. mathpac package.
Total of 84 handle floating - S
occurrences exponents z :=x** integer(y) function
of this error (X:in INTEGER; Y :in Float)
return Float;
procedure QTISEXP (vaws90.00.0 not QTISEXP (QTISEXP (Float_To_Integer(vaws9
Qa9a. INTEGER(vaws90.00.0), valid INTEGER(vaws9), *(2*%9)), 8#33000#) ;
Total of 49 | 8#33000%#) 8#33000#)
occurrences

of this error.

A-9

Table A-2. APL QA9 Package Body Compilation Error List Using The GNAT Compiler - 4

Program Problem Code Problem Manual Reengineer to Fixed in Later Versions by
Unit Compile Translator Developers
procedure proceglure QT!SEXPH . unconstrained vhisexl_t: STRING procedgre QTISEXPH(vhisex1 t:in
Qtisexph (vhisexl : in STRING; | ¢ htvne not allowed | (1..60) := (1..60 => ' STRING;

vhisex2 : in STRING) is
vhisexl t: STRING ;
vhisex2_t: STRING ;

begin
vhisex1 t :=vhisexl ;
vhisex2_t := vhisex2 ;
vhisexl1 t := vhspace ;
vhisex2_t ;= vhspace ;
return ;

end QTISEXPH ;

vhisex2_t:in STRING) is
begin
vhisex1 := vhisexl t;
vhisex2 := vhisex2_t;
vhisex1* := vhspace &
c2a_blanks(1..20) ;
vhisex2* := vhspace &
c2a_blanks(1..20) ;
return ;
end QTISEXPH ;

" vhisex1 and vhisex2 declared globally

A-10

Table A-2. APL QA9 Package Body Compilation Error List Using The GNAT Compiler - 5

Program Problem Code Problem Manual Reengineer to Fixed in Later Versions by
Unit Compile Translator Developers
procedure procedure . _ unconstrained vhisex2_t: procedure QTISEXPH(vhisex1 t:in
Qtisexph QTISEXPH(vhisex1 : in subtype not allowed | STRING(1..60):= STRING; _
STRING; vhisex2_t:in STRING) is
vhisex2 : in STRING) is (1..60=>""; begin
vhisexl_t: STRING ; vhisex1 := vhisexl t;
vhisex2_t: STRING ; vhisex2* := vhisex2_t ;
vhisex1* := vhspace &
begin c2a_blanks(1..20) ;
vhisex1 t :=vhisexl ; vhisex2* := vhspace &
vhisex2_t := vhisex2 ; c2a_blanks(1..20) ;
vhisexl1 _t := vhspace ; return ;
vhisex2_t ;= vhspace ; end QTISEXPH ;
return ;
end QTISEXPH ;
procedure if vaws9 = -240 then vaws9 is defined if vaws9 = -240.0 if vaws9 = -240.0 then
Qag9b as float
procedure if vaws9 = -7 then vaws9 is defined if vaws9 =-7.0 if vaws9 =-7.0
Qa9c as float
procedure if vfs6 = -17388 then vfs6 is defined as if vfs6 =-17388.0 if vfs6 =-17388.0
Qa%e float

" vhisex1 and vhisex2 declared globally

A-11

Table A-3. CCCC QA9 Package Body Compilation Error List Using The GNAT Compiler

Program Problem Code Problem Manual Reengineering to Compile Fixed in Later Versions by
Unit Translator Developers
Nquack Q with Math_Lib_Cms2; Math_Lib_Cms2 with Double_Elementary Functions; no
a9 depends on package
Math which is a VAX
math library.
use Double_Elementary Functions; no

use
Math_Lib_Cms2;

Math_Lib_Cms2
depends on package
Math which is a VAX
math library.

A-12

Table A-4. TRADA QA9 Package Specification Compilation Error List Using The GNAT Compiler

Program Unit Problem Code Problem Manual Reengineer to Compile Fixed in Later
Versions by
Translator
Developers
package TYPE Float_s IS number too TYPE Float_ss IS DIGITS 7; no
Cms_2 Types | DIGITS 7 RANGE - big. .
8#0.77777777#* 2.0 TYPE FIoat_S is DIGITS 7 RANGE
** 1023 .. . 8#O.7TTTTTTTT#H * 2.0 **
8#O.7777TT7T#* 2.0 Float_ss'Safe_Emax ..
**1023; - -
8#0.77777777# * 2.0 ** Float_ss'Safe_Emax;
package TYPE Float_d IS number too TYPE Float_d no
Cms_2 Types | DIGITS 16 RANGE - big

8#HO.77TTTTTTTT77777

77776%#* 2.0 * 1023 ..

8#HO.7TTTTTTTTT7T7777
T7776#* 2.0 ** 1023,

IS DIGITS System.Max_Digits

A-13

SOURCE LINES OF CODE COMPARISONS

Figure A-1 shows the source lines of code (SLOC) for the translator generated Ada QA9s and
CMS-2 QA9 programs. Ada SLOC was counted immediately following translation. Thefirst three
sets of bars (left to right) in the graph represent the trandlated Ada code produced by the TRADA,
APL, and CCCC trangdlators, without the predefined utilities that each of the trandators provide. The
right three sets of bars represent the corresponding code for the entire program.

CMS-2 line counts for the CMS-2 SLOC is the total number of executable statements ending in
“$”. Comment lines are statements beginning with the word “comment”. Text counts aretotal lines
as counted by atext editor.

Ada line counts for the SLOC for the Ada source code is computed as the number of statements
ending with a“;”, except those occurring in comments and character strings. * Comment lines were
counted as lines that contain two successive hyphens not embedded in a character string. Text count
again aretotal lines as counted by a text editor.

We do not bdieve that any meaningful conclusions can be drawn from the SLOC metrics in and
of themselves. (See Appendix D for a discussion on problems using SLOC as a metric). However,
figures for executable statements support our conclusion that all trandlators implement a
trandliterative approach (Appendix C).

HALSTEAD METRICS

Halstead metrics are shown in Figure A-2. The graph shows the overall program length, the
vocabulary size, and the actual volume for six program units produced by the tranglators. These units
represent the mgjority of the QA9 code. As seen from the graph, the trandlator outputs mirror each
other and the CMS-2 code. In other words, the translators produce Ada code that closdly resembles
the CMS-2 code. QTCONL1 vocabulary is very low for TRADA because TRADA moved the
complex vocabulary to another subprogram (QTMESSW).

MCCABE CYCLOMATIC COMPLEXITY METRIC

The McCabe cyclomatic complexity metric for the QA9 procedures is shown in Figure A-3. The
M cCabe cyclomatic complexity metric is based on a graph theoretic interpretation of program control
flow and provides an indication of structural complexity. More explanation of this metric is
discussed in Appendix D.

As seen by the graph, the translated source code mirrors the CM S-2 code for most of the program
units. Inunits QTCONL1 (Figure A-3. McCabe Cyclomatic Complexity Metric - 1), QTSYNOPS
and QA9A (Figure A-3. McCabe Cyclomatic Complexity Metric - 3) the CMS-2 code is considerable
more complex than the Ada code because the CM S-2 code uses constructs that are considered more
complex.

In this table, note that the Ada code for QT CON1 appears to have significantly less complexity
than the original CMS-2. This occurs because QT CON1 contains a procedure switch (P-SWITCH)
which was trandated to an Ada case statement whose complexity is shown under QTMESSW.

! The source listing for the Ada SLOC counter is given in Appendix J.

A-14

(Notethat only 3 bars are present for QTMESSW) For example, the QTCON1 CMS-2 has a
McCabe metric of 13. TRADA resultant Ada has a McCabe of 10 (7 for QTMESSW plus 3 for
QTCONL1).

Figure A-4 represents the complexity versus the percent of the QA9 source code produced by the
three trandators. This figure shows that most of QA9 produced by the three trandatorsis very
complex. See Appendix D for a detailed explanation of the cyclomatic complexity (V(G)). As seen
from the graph, the trandlator outputs mirror each other with only about eight percent of the code
having a V(G) less than 10, about 65 percent of the code having a V(G) between 61 and 70, and
about 25 percent of the code having a V(G) over 90. Keep in mind that V(G) greater than 50 usually
means the source codeis incomprehensible. These results are another indication of the translators
producing Ada code that resembles the CM S-2 code.

A-15

QA9 Lines of Code

Number Of Lines

16000

14000

12000

10000
@ Trada

BAPL
occcce
OoCcMS2

8000

6000

4000

2000

SLOC Comments Text SLOC Comments Text

without Predefined Entire Program
Utilities

Program Source

Figure A-1. QA9 CMS-2 and Translated Ada QA9 Line Counts

1. Ada SLOC is number of ddimiting semicolon statements.
CMS-2 SLOC is number of delimiting $ statements.
2. Textislines of code counted by an editor (includes comments, blank lines and text).

A-16

Magnitude

Halstead Metrics

40000

35000

30000

25000 Volume CMS2
Volume CCCC
Volume APL

Volume Trada

Vocab (Gr. eta) CMS2

Vocab (Gr. eta) CCCC

AN

NANANANANAN

NI

h
AW

\ “‘““‘

Vocab (Gr. eta) APL Metric

Vocab (Gr. eta) Trada

Length (N) CMS2
Length (N) CCCC

Length (N) APL

Length (N) Trada

QA9B
QA9C
QA9D

w
o
<
(o4

Figure A-2. Halstead Metrics

A-17

McCabe Complexity V(G)
Magintude
14

12

10

@Trada
BAPL

61 gcccc
OCcMs2

QTMESSW QTERRA QTERRB QTERRC QTERRD QTCONO QTCON1 QTCON5 QTCON6 QTCON7 QTCON10 QTMESA QTDUMMY QTHEAD PRINTSTR PRINTSCP

Sample

Figure A-3. McCabe Cyclomatic Complexity Metric - 1
*Note the CM S-2 complexity in QTCON1 was trandated into the Ada QTMESSW procedures.

A-18

McCabe Complexity V(G)

Magnitude
3
25
2
@ Trada
s BAPL
gcccc
OoCMS2
1 |
0.5 H
04 ; ; ; ; ; ; ; ; ; ; ; ; ; ; | [

QTTEXT QTTEXTO QTSKIP QTSTUB QTTESTS QTSAME QTISEXP QTISEXPH QTISEXPF QTISEXFS QTISEXFD QTISEXPB QTISEXPD CLREGS QTSTART

Sample

Figure A-3. McCabe Cyclomatic Complexity Metric - 2

* Notethat V(G) appears to be dramatically greater for QT SKIP, QTTESTS, and QTISEXPB procedures than other procedures. The differences are not significant
since the magnitude of the V(G) scale only ranges from 0 to 3.

A-19

McCabe Complexity V(G)

Magnitude

200

180

160

140

120

D Trada
BAPL

pgcccce
OCMS2

100

80

60 —

40 1

QTSET QTERRE QTCONSW QTSYNOPS QA9A QA9B QA9C QA9D QA9E

Sample

Figure A-3. McCabe Cyclomatic Complexity Metric - 3

* Note that the CMS-2 QTSY OPS has a high V(G) because it makes a call to a P-SWITCH. Thiswas trandated into a case statement in the Ada QT CONSW procedures.
The CMS-2 QA9A and CMS-2 QTSET have a higher V(G) because of acall toaP-SWITCH

A-20

100

90

80

70

60

50

Percent

40

30

20

10

Complexity versus Percent of QA9 Source

E @ =

Trada

cccce
Translator

APL

OVG 91-10
OVG 61-70
mVG 11-20
BVG 1-10

Figure A-4. McCabe Complexity versus Percent of Ada QA9

A-21

CONFORMANCE TO SOFTWARE PRODUCTIVITY CONSORTIUM GUIDELINES

The reworked Ada QA9 code produced by the translators was analyzed for conformance to
the Software Productivity Consortium (SPC) Ada coding guidelines. The SPC presents a set of
specific guiddines for using the features of Ada in a disciplined way intending to produce high
quality Ada programs. These guidelines are the most widdy accepted Ada guidelines that exist
today. Conformance was analyzed by processing the Ada code with the standards enforcement
editor of Ada-ASSURED. Ada-ASSURED is a language-sensitive editor for Ada that supports
the enforcement of quality and style guidelines and can be set to enforce those guiddines
developed by the SPC. All three trandators produced Ada code that mirrored the CMS-2 code.
Therefore, poor quality CMS-2 code will be translated into poor quality Ada code. Because the
CMS-2 QA9 sample violated SPC guiddines, the corresponding Ada code also violated these
guiddines. All three translators produced code that had similar coding violations. These
included:

Use of GOTOs

Non-constant object declarations declared in the visible part of the package specification
Use of Labels (associated with GOTOs)

Use of unnamed nested |oops

Subprogram body size exceeds maximum of 200 SLOC

NN N N

Table A-5 shows the total number of SPC coding violations for Ada QA9 produced by the three
trandlators. These violations were detected by the tool Ada-ASSURED.

Table A-6, Table A-7, and Table A-8 provide detailed information on the coding violations
flagged by Ada-ASSURED for Ada QA9 code produced by the APL, CCCC, and TRADA
trandators.

These tables identify the Ada program unit where the violation occurred, show the problem code
(where appropriate) and provide the violation as reported by Ada-ASSURED. When the problem
code is many statements long, it is not included in the table. Instead, a brief explanation may be
provided in the problem code column.

A-22

Table A-1. Total SPC Ada Style Violations of Ada Usage
(QA9 Produced by Translators)

Translator Use Named Use Use of | Nested Exit Blocks Non- Sub- Long
Clause | Association of Labels Loops | Statements | must be constant program loops
Gotos Must be from named object body must be
Named named declarations size named
loops must not allowed | exceeds
be named in the visible 200
part of the
spec
APL 2 2 403 371 2 0 0 101 5 2
CCccC 2 0 403 394 2 6 8 1202 5 2
TRADA 0 0 403 391 2 2 0 319 5 2

1 CCCC produced many objects that are unused in the program. According to the SPC guiddines the use of non-constant object declarations in the package
specification should be avoided.

A-23

Table A-2. Details on SPC Ada Style Violations: Ada QA9 Produced by APL

Program Unit

Problem Code

Coding Violations as Reported by Ada-ASSURED

package spec
Qa9qglook

use System

The identifier; System is used in context "use clause"

Sx1 : Integeru32

non constant object declarations are not permitted in the visible part of a package
specification®

package body
Qa9qglook

use System;

The identifier; System is used in context "use clause"

goto Qterrel4

Use of GOTO is not allowed?

<<Qterrel4>>

Labels are not allowed since GOTO is not allowed!

(multiple nested un-
named loops)

Nested loops must ALL be named.

(Too many statements
within loop)

A loop this long must be named.

procedure Qa9a

Subprogram body size of 885 exceeds maximum of 200

procedure Qa%b

Subprogram body size of 551 exceeds maximum of 200

procedure Qa9c

Subprogram body size of 551 exceeds maximum of 200

procedure Qa9d

Subprogram body size of 551 exceeds maximum of 200

procedure Qa9e

Subprogram body size of 550 exceeds maximum of 200

! Occurs many times

A-24

Table A-3. Details on SPC Ada Style Violations: Ada QA9 Produced by CCCC

Program Unit Problem Code Coding Violations as Reported by Ada-ASSURED
package spec use System; The identifier; System is used in context "use clause"
Qagqglook

Sx1 : Integer =1

Non-constant object declarations are not permitted in the visible part of a package
specification.*

package body use System;
Qagqglook

The identifier; System is used in context "use clause"

Statement nesting depth of 18 exceeds maximum of

goto Qterrel4

Use of GOTO is not allowed?

<<Qterrel4>>

Labels are not allowed since GOTO is not allowed!

All BLOCKS must be named.

Nested loops must ALL be named.

A loop this long must be named.

procedure Qa9 -

Subprogram body size of 659 exceeds maximum of 200

! Occurs many times

A-25

Table A-4. Details on SPC Ada Style Violations: Ada QA9 Produced by TRADA

Program Unit

Problem Code

Coding Violations as Reported by Ada-ASSURED

package spec
Agtcon

Vhisex1 : H_60 :=
(others => Ascii.Nul);

Non-constant object declarations are not permitted in the visible part of a package
specification.*

package body
Agtcon

goto Qterrel4

Use of GOTO is not allowed?

<<Qterrel4>>

Labels are not allowed since GOTO is not allowed!

Nested loops must ALL be named.

A loop this long must be named.

procedure Qa9a

Subprogram body size of 883 exceeds maximum of 200

procedure Qa%b

Subprogram body size of 556 exceeds maximum of 200

procedure Qa9c is

Subprogram body size of 562 exceeds maximum of 200

procedure Qa9d is

Subprogram body size of 563 exceeds maximum of 200

procedure Qa%e is

Subprogram body size of 562 exceeds maximum of 200

! Occurs many times

A-26

CONCLUSIONS

1. The complexity of the Ada code produced by the translators mirrors the complexity of the CMS-
2 code. Thisis shown with the McCabe and Halstead metrics. The translators do not introduce
complexity.

2. Thecomplexity of the Ada code by the translatorsis similar. Complexity is the same across
trandators. Thisis shown with the M cCabe and Halstead metrics.

3. The Ada produced by the translators all needed some reengineering to compile cleanly. APL
fixed a number of bugs that simplified the reengineering of the APL produced Ada code.

4. Thetrandators all produced Ada source that needs to be made compliant with SPC guiddines.
The translators have similar problems whose origins arein the CMS-2 code.

5. Thevariable names produced by the trandators usually matched the CMS-2 names. This was
extremey useful in comparing the CM S-2 code with the translated Ada code. These names
could later be converted to meaningful names during the reengineering process.

6. All trandators produced indented Ada source code.
7. Thesample sdected CMS-2 QA9 was well suited for tranglators.

A-27

APPENDIX B: RESULTS OF STRESS TESTING

The purpose of stress testing is to examine the performance of the APL, CCCC, and TRADA
trangators when faced with a spectrum of CM S-2 language constructs as seen in todays CMS-2
programs. This phase thoroughly tested the ability of trandators to handle all CMS-2 constructs.

TEST CASES
Test cases used for stress testing were:
The Machine Transferable Support Software (MTASS) CMS-2 Test Suite
CMS-2 code from NAVAIR, NAVSEA, and SPAWAR projects

The MTASS test suite was specifically designed to test CMS-2 compilers. This collection of
CMS-2 test files, containing CM S-2 programs, evolved over a period of 20 years. Thesefileswere
designed to be more “ harmful” than normal because they test variable extremes and compiler weak
spots (e.g., rules of arithmetic) largely discovered by user reported errors. A comprehensive list of
CMS-2 test filesis found in the Machine Transferable Support Software (MTASS) Revision Test
Plan Procedures (RTPP) document (FCDSSA, 1993). Those selected for stress testing are shown in
TableB-1, and Table B-2. Not all CMS-2 constructs have an associated test file(s). However, where
test file(s) existed for a CMS-2 construct, one was sdected as a tradation candidate. Thisresulted in
atotal of 84 files being chosen from the AN/UYK-7 functional Quality Assurance (QA) test suite for
trandation.

These QA files represented at least one functional test for every trandatable CM S-2 construct
(e.g., numeric expression) where atest file(s) existed. Sometimes non-tranglatable constructs (e.g.,
overlays) were input to examine translator behavior. Several of these files contain forced expected
errors. Thesetests are very appropriate for testing legacy programs because they typically contain
non-translatables and other errors.

The CMS-2 source code contributed by NAVAIR, NAVSEA, and SPAWAR included the Extra
Low Frequency (ELF) Communications, MK-2 Fire Control System, AEGIS AN/UYK-43
SPYLOOP, S3-Aircraft Tactical Mission Program (TMP), and H60B Hdlicopter projects. Points-of-
contact for these projects are given in Section 2. Results of the stress testing appear in the Table B-3,
Translating and Compiling Using Project Contributed Legacy CM S-2 Source Code.

We also seected QA9 from the AN/UY K-43 test suite for testing during this phase aswell asin
the Quick Look and Reengineer to Execution phases. QA9 performs the most comprehensive
numeric testing. QA9 does self-checking (vice manual checking) to compare CM S-2 execution
results with expected results.

MTASS STRESS TESTING

Each CM S-2 test file was originally designed to be compiled with a compool (pre-compiled
common system data) then linked with a Test Controller (TC). For trandation purposes, the compool
and test controller, both in source code form, were included directly in the translation run

stream using the INCLUDE directive. TC CMS-2 code for executive input/output requests,
producing test results for saf-checking QA files, was strategically commented out. These services
were not applicable to stress testing, and would be provided as needed for execution testing in the
Ada modified TC viaText_IO, Integer_10, Float_|O, and other 10 packages from the Ada
Predefines.

CCCC and TRADA were stress tested on an NRaD VAX 11/785 computer running the VM S 5.5-
1 operating system. Thiswas a very lightly loaded system with only this testing and system operator
active. The process was automated using command files to submit all 84 test files, 5to 20 at atime,
to all threetrandators as batch jobs. Grouping was used because translation can be sufficiently time
consuming to time-out batch queues. Queues ran sequentially vice concurrently allowing wall clock
time collection with little interference from any other jobs. APL was stress tested in a similar manner
on alightly loaded Sun SPARC 10 running OS 4.1.3.

Trandlation catastrophic failure includes abortive failures such as core dumps and symbolic stack
dumps (tracebacks from constraint errors), infinite loops, and cases where all appeared wdl but no
Ada was generated. Several catastrophic failures occurred while running each trandator. The
overall stress testing trandation results, including CMS-2 constructs causing failures, arereportedin
TableB-1.

Stress testing included the compilation of al translator produced files. (If any code was
marked/bypassed during translation, functionality would be lost and correct execution would not be
possible, but the remainder needed to compile correctly). The volume of generated Ada provided the
perfect opportunity to try many compiles. Overall stress testing compilation results are reported in
Table B-2, the Stress Test Using MTASS Test Suite - Compile Information, included in this section.

CONCEPTUAL DIFFERENCES AMONG TRANSLATORS
Five conceptual differences surfaced among translators for:
controlling the trangdlation process,

termination from tranglation and placement of errors,
construction of packages,

providing a utility package that contains type and function declarations, and

o > W N P

organizing the trandators' generated Ada code into files.
Each will be discussed.

Controlling The Translation Process

APL provides switches, TRADA provides a script file, and CCCC provides no control over the
resultant Ada code. Control over the format and content, such as upper-lower case and indenting of
the Ada codeis desirable.

Termination and Reporting Errors

CCCC and APL report some classes of errors interactively during translation, place other classes
of errors into the generated Ada code inside comments, and always attempt to complete the
trangdlation process regardless of errors. TRADA places some classes of errors into its summary file,
some classes of errors into the generated Ada code inside of comments, and depending on the real or
perceived errors will quit translation as opposed to generating bad Ada. TRADA generated Ada for
only 54 of the 84 QA files which is shown at the end of Table B-2.

Construction of Packages

APL produces one package specification and one package body per trandation. CCCC and
TRADA produce multiple specifications and bodies.

Providing Utility Package

TRADA generates all required Ada fromits CMS-2 input, but both APL and CCCC, as part of the
trandator installation, provide canned Ada packages called BASIC _ DEFNs and PREDEFINEDs
which contain some commonly used types and functions. This diminates the requirement for APL
and CCCC trandators to generatethese. Since their generated Ada might use these types and
functions, the predefineds must beinitially compiled into an Ada library before any other APL or
CCCC generated code is compiled.

Creating Files

CCCC puts all generated Ada into one big file, APL puts all Ada into one specification and one
body file, and TRADA generates multiple files to accommodate multiple package specifications and
bodies, and provides a compilation order in a summary file. TRADA'’s results were deemed to
accommodate changes most easily, and be more amenableto library based configuration
management.

BENEFITS OF STRESS TESTING

Stress Testing was of mutual benefit to translator developers and ONR/ NRaD. When a
catastrophic failure occurred the developer was given supporting CM S-2 source to reproduce and
correct the problem. Stress tests provided QA for the developers who, in turn, resubmitted their
enhanced products for evaluation. After delivery of a corrected trandlator, all 84 QA files were input
from the beginning to locate failures (regressions) of tests that previously passed. Translator
corrections benefited ONR/ NRaD, and any future user, by improving atranslator’s probability of
completing its Ada generation, and generating better code in some cases. Results shown in all stress
test tables, Tables B-1 through B-3 are based on the final corrected translator revision provided by
the developer.

EVALUATION OF TRANSLATION RESULTS
Refer to Table B-1, Stress Testing Using MTASS Test Suite - Translation Information.

The columnsttitled Test Description, User Handbook Section, and File Name are sdf-explanatory,
e.g. Name (2nd page, 2nd row of table) is defined in MTASS CM S-2 User Handbook section 3.2.4,
and tested in file 070QA541. Somefiles such as 070QA2 test multiple constructs (numeric
expression, boolean expression, and others), and appear several placesin the checklist. N/A means a
specific fileis not available to test the construct, but the construct is probably tested non-specifically
in other tests. For example, User Handbook section 3.2.1 delimiters are tested throughout the tests.
The Test Controller is not in the CMS-2 User Handbook and is included in the table only to provide
Source Lines of Code (SLOC) information for later use. (SYSDD and QTCON were INCLUDED in
each of the 84 QA files, except for 070DC1 and 070DCER1 which are standalone direct code tests
for the trandation process.)

Test Typeindicates when the CMS-2 construct’ s file was (M)anual checking, automated and
(S)df-checking, contained (B)oth manual and self-checking parts, was tested (N)on-specifically in
other tests, or not tested (—).

Trandator Pass, Quit, or Fail and minutes of wall clock time shows all 3 trandlators' results.
When atrandator Passed, Ada code was generated followed by normal termination. When a
trandlator Quit, somereal or perceived unsatisfactory condition caused a user message(s), no Ada
was generated, but termination was normal. When atrandlator Failed it caused a core dump,
traceback, looped infinitely, or quietly generated no Ada. When a trandlator had a catastrophic
failure, the CM S-2 code causing the failure was provided to the developer for translator correction
and resubmission to stress testing. A history of failures and corrections can be seen in a sequence
such as P,F,P which indicates that the trandation originally passed, trandlator changes caused a
regressivefailure, and, finally, theregressioninthe trandator was corrected. (CMS-2 codein QA
files was never modified to correct trandator failures.) Thetotal numbers of unique catastrophic
failures for all 84 QA tests are shown for each translator on page 14 of thistable. The unique failures
were TRADA—-6, APL—11, CCCC-10. No trends were apparent for CM S-2 constructs causing
failures across trandators. Note that the unique failures are not a summation of the columns since
somefiles appear several times throughout the table.

Thewall clock tranglation time depended on test file size, CM S-2 constructs encountered, a
trandator’ s design/ implementation, and host computer. We were the only user on the host
computers during the calculation of wall clock time. TRADA and CCCC ran on a dedicated
VAX/VMS so some comparison between these two is reasonable. APL ran on a dedicated Sun/OS
which is faster than the VAX/VMS so time comparison with the other two trandators is not
reasonable. In most cases where TRADA finished in one minute, it had reported syntactic or
semantic problems (real or perceived) needing correction, and then quit.

TRADA generated Ada for 54 of the 84 QA files, APL for all 84, and CCCC for 83 of the 84
files. Total trandation timesfor all 84 QA tests are shown on page 14 of thetable. Thetotal times
were: TRADA - 6 hr. 22 min., APL - 4 hr. 42 min., CCCC - 31 hr. 59 min. Based on a 54/84 ratio
and adjusting for the 1 minute already spent, we estimate that TRADA could have completed all 84

tests, if they had been in an acceptable condition, in about 9 hr. 30 min. Note that the total times are
not a column summation since some files appear several times throughout the table.

We do not bdievetimes, nor time differences between trandators, are significant since translators
arenot used like a compiler which is run repeatedly during project life cycle. Trandation will
probably involve only afew iterations of reengineering/ translation and then be finished.

CMS-2 Source Lines of Code (SLOC) shows the SLOC present in each QA file (before the Test
Controller has been INCLUDED for trandation). Throughout stress testing, CMS-2 and Ada SLOC
is counted as straight lines of text as counted by an editor. A text editor provided these numbers
confirmed by the CMS-2 Metrics Generator. For example, the Nametest 3.2.4 file 070QA541 is 656
unique SLOC. TableB-1, Stress Testing Using MTASS Test Suite - Translation Information shows
only QA file SLOC without the test controller.

Table B-1, shows the combined TC (1543 SLOC) and QA file sSLOC whichin this case would
be 1543 plus 656 for 070QA541 totaling 2199 SLOC actually input to a tranglator.

About 117,700 totally unique SLOC, as shown inthe Table B-1, Stress Testing Using MTASS
Test Suite - Trandation Information page 14, were input to each translator. Thissums all 84 QA
files, and adds the compool and Test Controller (TC) only once. However, the compool and test
controller were INCLUDED in all but two files which means about 242,600 total CMS-2 SLOC were
input to each trandator, as is shown in the compile information table, Table B-2, Stress Testing
Using MTASS Test Suite - Compile Information totals. Considering that data and proceduresin TC
areused in different contexts by every QA file, each trandlator processed 242,600 lines of source
code. Notethat total unique SLOC is not a column summation since some files appear several times
throughout the table.

EXAMINATION OF COMPILATION RESULTS

Table B-2 shows results after attempting to compile code generated by each translator for each
QA filewith three different Ada compilers— VAX, Sun, and GNAT. This required nine compile
attempts per CMS-2 QA file.

The columnsttitled Test Description, User Handbook Section, and File Name are the same as
described previously for Table B-1.

Test Number isincluded in this table only as a cross reference into the stress testing command
files. Test number represents the command file alpha/numeric order. The command files (COM)
were built in QA test alpha/numeric order, (i.e. QA10, QA11A, QA11B), rather thanin CMS-2 User
Handbook section numeric order. In User Handbook order a QA test could appear several times.
COM file alpha/numeric order ensured each file was invoked once, and only once.

Compiles VAX/ Sun/ GNAT/ and Ada Source Lines of Code (SLOC) shows compilation results
from the three compilers for each trandator for each QA file. Results show (C)orrect compile,
(U)nsuccessful compile, or X when no Ada was generated by a translator, therefore, no compile
attempt was possible. An unsuccessful compile is one containing error messages or informational
messages stating that a constraint error will be raised during execution. (3% of errors were
informational constraint error messages.) For correct compilation remember that all direct code,
non-translatables, and constructs that a trandator could not handle appear in commentsin a

trandator’ s generated Ada. Therefore, a correct compilation does not give an accurate indication of
future correct execution. Unsuccessful compilation implies one or more compilation errors were
encountered across a very wide syntax (format) and semantic (meaning) spectrum. The number
following thelast dlash/ isthe Ada SLOC generated by the trandlator, or the word none. The word
none, will be preceded by X/X/X/ inall cases. Thistable allows comparison of the QA test
including Test Controller CMS-2 SLOC to the Ada SLOC generated by each trandlator. For
example, the last test in the table, 070QA539D (Table B-2, page 13), shows 2410 CMS-2 SLOC
(1543 Test Controller plus 867 for QA539D itsef) resulted in 5002 TRADA SLOC, 4414 APL
SLOC, and 10252 CCCC SLOC. Remember that both the CMS-2 and Ada SL OCs were counted by
editors and include comments and ‘white space’ (blank lines). Only two tests of the 84, 070DC1 and
070DCERY1, did not use/ include TC. Therefore, CMS-2 SLOC numbers for these 2 files are the
same in both the translation and compile tables; 4431 and 274 respectively.

EXAMINATION OF SLOC IN COMPILE INFORMATION TABLE

Table B-2 containsthe TOTAL SLOC on page 14. 242.6K total CMS-2 SLOC resulted in
385.0K TRADA SLOC (ignore the second numbers for now), 468.3K APL SLOC, and 923.7K
CCCC SLOC. Based ontheratio that TRADA generated Ada for only 54 of the 84 files, we
estimate that TRADA would have, had all the QA files been acceptable to TRADA, generated the
second number of about 598.9K SLOC for all 84 files. The second numbers for APL, 468.9K, and
CCCC, 925.7K, simply add 1 time their BASIC_DEFNS and PREDEFINEDSs SL OCs, respectively,
considering them as part of their overall Ada. This addition isinsignificant in both cases.

The Ada SLOCs can be used as a basic indicator of code expansion from the CMS-2, and a
comparitor among translators. Total SLOCs show that a project may experience an Adato CMS-2
expansion ratio as high as 4:1 after translating non-reengineered CM S-2. This depends on the
trandator selected and the CM S-2 constructs. One must consider that the Ada file(s) also contain
blank lines for readability (white space), and may contain non-tranglatables bracketed in comments
and error messages. White spaceis about: TRADA - 10%, APL - 6%, and CCCC - 4%. The
original CM S-2 white space was about 3%. Ada reengineering of the non-trandatables may result in
asizedecrease. Removal of error message lines will decrease SLOC. Some error message bloating
can be expected in APL and CCCC since most of their error messages appear as Ada comments,
whereas, TRADA places many error messages in its summary file. Considering all the above, a
project’s Adato CMS-2 expansion ratio will likely be around 2:1. Reengineering the Ada can
significantly reducethisratio. Comparing Ada SLOCs across trandlators, either by QA fileor by
totals, shows the code each translator percelved as necessary to solvethe problem. Notethat total
SLOC numbers are not a column summation since some files appear several times throughout the
table.

EXPLANATION OF ADA COMPILATIONS

Now continuereferring to page 14 of Table B-2. These results are based on QA file trandations
produced by final tranglator revisions. Correct compilation percentages are shown for each tranglator
for VAX, Sun, and GNAT compilers, and are discussed in the following three paragraphs. Using

multiple compilers showed that when a trandlator’ s generated Ada compiled with one compiler, it
was over 90% probable to compile correctly, with very minor adjustments, with the other two
compilers. These minor adjustments are mentioned in the next three paragraphs, and are discussed in
detail inthe Reengineer Until Ada Executes Correctly report section, Appendix C.

For TRADA, 24 of the 84 QA files correctly compiled with VAX Adayidding 29%. But TRADA
quit processing for 30 files, producing Ada for only 54 files. The second number, inside parentheses,
indicates that 44% of the 54 files produced by TRADA compiled with VAX Ada (24/54). Initially,
none of TRADA’s 54 files compiled with either Sun or GNAT. Investigation showed the range
defined for floating point single and floating point double types was acceptable to VAX Ada but not
by Sun or GNAT compilers on the Sun SPARC. Changing the range values to predefined language
attributes of Safe Emax and Max_Digits provided a workaround for a problem which had guaranteed
100% failure with Sun and GNAT. We believe that this change provided more reasonable/useful
compilation statistics. After this change Sun Ada compiled 24 of 54 files yieding 29%, and GNAT
compiled 22 of 84 filesyidding 21%. Generally, the same files compiled across the 3 compilers.

For APL, 1 of the 84 QA files, 070DCER1, compiled with VAX, Sun, and GNAT yielding 1%
each. APL’slow percentage of correct compilations was caused by a high number of syntax errors
and extraneous characters appearing in its generated Ada.

For CCCC, 14 of the 84 QA files compiled with VAX yielding 17%. However, the second
number inside parentheses, also 17%, is probably a better indicator since CCCC only generated Ada
code for 83 QA files (14 / 83 = 17%). Initially, none of CCCC’s 83 files compiled for either Sun or
GNAT. Investigation showed dependency on a proprietary DEC math library, math_lib, available on
VAX but not on Sun SPARC. For GNAT substituting the Ada 95
Ada.Numerics.Generic_Elementary Functions for math_lib corrected a transportability problem
which guaranteed 100% failure. For Sun substituting the proprietary math library, math, for math_lib
corrected the same transportability problem. We believe these changes provided more reasonable/
useful compilation statistics. After this change Sun and GNAT both compiled the same 10 of 83
fileswith 1 exception, yidding 12%.

INVESTIGATION OF COMPILATION ERRORS

Using VAX Ada we looked deeper into the quantity and nature of the syntactic and semantic
compilation errors. Thisinformation, discussed in the next four paragraphs, is not in atable.

For TRADA, 1003 errors were produced from the VAX compilation of 54 QA files. (30 files
produced compilation errors). This averages 33 errors per unsuccessful compile (1003/30). The
range was between 1 and 278 errors per compile. About a half dozen syntax errors were reported in
the generated Ada code; the rest were semantic errors.

For APL, 2349 errors were produced from the 83 unsuccessful VAX compilations averaging 28
errors per compilation. The range was between 4 and 69 errors per compilation. A high percentage
of APL’s errors, about 2/3, were Ada syntactical errors or illegal charactersin the sourcefiles. These
syntax errors guaranteed a high percentage of unsuccessful compilations. These will require either
fixing thetrandator, or reengineering the generated Ada before many of the semantic errors will be
exposed.

For CCCC, 1713 errors existed over 69 unsuccessful VAX compilations averaging 25 errors per
compilation. Therange was from 1 through 178 errors per compile. Less than two percent of errors
reported in CCCC'’ s generated code were syntactic; the rest were semantic errors.

Across all three trandlators the average was 28 errors per unsuccessful compilation. These were
usually not 28 separate and distinct errors, but probably about 6 different categories of similar errors
meaning that one correction may resolve four or five distinct errors. Due to the nature of compilers,
many corrections have potential to expose the next layer of errors. Several correction passes are
likely required to achieve a correct compilation at thisfirst level. At the next levd non-trandatables,
bracketed in Ada comments by trandlators, such as direct code, must be reengineered on ether the
CMS-2 or Ada sideto reach a correct compilation. Final reengineering will probably be necessary to
achieve execution that is functionally equivalent to execution of the CMS-2. We consider this
observation of multiple level issues very important since considerable time must be spent addressing
each and every trangdlation problem.

PROJECT-CONTRIBUTED LEGACY CMS-2 SAMPLES

In addition to using files from the CMS-2 QA test suite, five projects contributed source code for
translation/compilation research. Results are shown in Table B-3, Trandating and Compiling using
Project-Contributed Legacy CM S-2 Source Code. This table combines translation and compilation
results, and also shows adjustments made to source code before tranglation, and resultant errors.
Each project table entry contains translation pass, quit or catastrophic failure; minutes of wall clock
time; Ada compiler results (VAX Ada/Sun Ada/GNAT); Ada SLOC; and descriptive comments.

B-8

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 1

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail & .
Section Test Suite min. of wall & min. of min. of wall Lines of
clock time wall clock clock time Code .
Test Controller N/A SYSDD & QTCON N/A N/A N/A 1543
Delimiters 3.2.1 N/A N
Digits 3.2.2 N/A N
Decimal Digits 3.2.2.1 N/A N
Octal Digits 3.2.2.2 N/A N
Hexadecimal Digits 3.2.2.3 N/A N
Test Type Meaning Translation Meaning
- Not tested F Catastrophic translator Failure
B Both self-checking and manual F,P Failed; translator corrected; passed
M Manual check N/A Not applicable
N Non-specifically tested in other tests P Passed/completed translation - Ada code
generated
S Automated/ self-checking Q Quit translation due to errors - user notified
* All SLOC is straight lines of text

B-9

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 2

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail &)
Section Test Suite min. of wall & min.of | min.of wall | Linesof
clock time wall clock clock time Code
time (SLOC)
Letters 3.2.3 N/A N
Name 3.2.4 070QA541 M Q@) P (2) F,P (13) 656
Name List 3.24.1 N/A N
Tag (EQUALS) 3.25 070QA20 S Q1) P (4) F,P (28) 2809
Tag Term 3.25.1 N/A N
Data Unit 3.2.6 N/A N
Constant 3.2.7 N/A N
Numeric Constant 3.2.7.1 N/A N
(CMODE)
Octal Constant 3.2.7.1.1 070QA8 S Q@ P (2) P (11) 658
Decimal Constant 3.2.7.1.2 070QA8 S Q@ P (2) P (11) 658
Hexadecimal Constant 3.2.7.1.3 N/A N
Character Constant 3.2.7.2 N/A N
Status Constant 3.2.7.3 070QA582 S Q@ P (2) P (17) 595
Boolean Constant 3.2.7.4 N/A N
Notes (COMMENT) 3.2.75 N/A N

B-10

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 3

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail & .
Section Test Suite min.of wall | & min.of | min.ofwall | Linesof
clock time | wall clock | clock time Code
time (SLOC)
Numeric Expression 3.2.8.1 070QA1 S F.P (5) P (2) F,P (18) 627
3.2.8.1 070QA2 S Q) F.P (3) P (25) 2075
3.2.8.1 430QA9 S P (4) P (1) P (17) 3383
Numeric Expression 3.2.8.1 070MS1 S P (5) P (1) P (20) 1079
(MSCALE)
3.2.8.1 070MS2 S P (5) P (2) P (22) 1107
070MS1F1 S P (5) P (2) P (20) 1104
Boolean Expression 3.2.8.2 070QA2 S Q@ F.P (3) P (25) 2075
Relational Expression 3.2.8.2.1 N/A N
Status Expression 3.2.8.3 N/A -
Character Expression 3.2.8.4 N/A -
Bit String Expression 3.2.8.5 N/A -
Conditional Expression 3.2.9.1 070QA2 S Q1) F.P (3) P (25) 2075
070QA16 S P (6) P (2) P (22) 1953
Simple Type 3.2.10 070QA584 S Q (1) F,P (3) F,P (25) 1454
Type Decl 3.2.11 070QA584 S Q) F.P (3) F,P (25) 1454

B-11

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 4

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail &)
Section Test Suite min. of wall | Fail & min. | min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
CMS-2 System/End 3.3.1 N/A N
System Decls
3.3.2 N/A N
Comments 3.3.3 N/A N
CSWITCH 3.3.4 070QA26 M P (4) P,F.P (3) P (16) 667
Header Blocks 3.4.1 N/A N
Options Decls 34.1 N/A N
System Index Decl 3.4.3 N/A N
Debug Decl 3.4.4 070QA95 M Q@) P (3) P (17) 477
Address Counter 3.45 070AC1 S P (3) P (2) P (21) 382
Separation Decl
3.4.5 070AD1 S P (3) P (2 P (21) 390
Equals Decl 3.4.6 070QA32A S P (4) P (3) P (17) 428
3.4.6 070QA32B M Q@) P (@) P (16) 84
Substitution Decl 347 070QA33 S Q@) P (@) P (15) 307
Constant Mode Decl 3.4.8 070QA34 S P (3) P (2) F,P (16) 153
Executive Decl 3.4.9 N/A -

B-12

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 5

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail & .
Section Test Suite min. of wall | Fail & min. | min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
Pooling Decl 3.4.10 070AD1 S P (3) P (2) P (21) 390
3.4.10 070DT1 S P (3) P (2) P (21) 377
3.4.10 070FDT1 S P (3) P (2) P (21) 380
LTAG Variable Decl 3.4.11 070QA20 S Q) P (4) F.P (28) 2809
Mode Decl 3.4.12 070QA2 S Q@) F.P (3) P (25) 2075
3.4.12 070QA38 S F.Q (1) P (1) P (16) 298
Single Precision Decl 3.4.13 070QA39 S P (3) P (1) P (16) 150
Parameter Passing Decl 3.4.14 070QA21C S Q1) F,P(4) P (25) 1767
3.4.14 070QA21D S Q (1) F,P (4) P (26) 1764
3.4.14 070QA21R S Q (1) F,P (4) P (25) 1765
CSWITCH Delete Decl 3.4.15 070QA43A M P (4) P (2) P.F.P (16) 677
3.4.15 070QA43B M P (4) P.F.P (2) P (16) 626
Spill Decl 3.4.16 070QA44A M P (3) P (1) P (15) 59
3.4.16 070QA44B M P (3) P (1) P (16) 108
Scaling Mode Decl 3.4.17 N/A N

B-13

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 6

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail &)
Section Test Suite min. of wall | Fail & min.| min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
System Data Design 351 N/A N
Direct Code Block 3.5.2 070DC1 S Q@ P (10) P () 4431
3.5.2 070DCER1 M P (1) P (1) P (1) 274
3.5.2 070DCERTR M P (2) P (1) P (15) 90
3.5.2 070DECRTRML M P (2) P (1) P (15) 71
Table Decl 3.5.3 N/A N
Field Decl 3.5.3.1 07FQA10F2 S F,P (15) P (2) P (29) 3806
070QA17 S Q(3) P (3) P (34) 1924
070QA16 S P (6) P (2) P (22) 1953
070QA14 S P (8) P (9) P (24) 1880
Like-Table Decl 3.5.3.2 N/A N
Item-Area Decl 3.5.3.2 N/A N
Sub-Table Decl 3.5.34 070QA19 S F.P (12) P (3) P (32) 3712
Field-Overlay Decl 3.5.35 070QA3 S Q@ P (2) P (23) 976
Modifier 3.5.4 070QA53 B Q@) P (1) P (18) 321
External Program Decl 3.55 N/A N

B-14

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 7

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail & .
Section Test Suite min. of wall | Fail & min. | min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
Variable Decl 3.5.6 N/A N
Procedure Sw Bl 3.5.7 070QA5 S F,P (4) P (2) P (17) 450
PINDEX Decl 3571 N/A —
PITEM Switch Block 3.5.7.2 N/A —
PDOUBLE Switch 3.5.7.3 N/A —
Parameter Decl 3.5.8 070QA2 S Q@ F.P (3) P (25) 2075
Overlay Decl 3.5.9 070QA3 S Q@) P (2) P (23) 976
3.5.9 070QA60 S F.P (4) F.P (3) P (96) 1019
Data Statement 3.5.10 N/A N
Range Decl 3.5.11 070QA95 S Q@) P (3) P (17) 477
Format Decl 3.5.12 070QA8 B Q@ P (2) P (11) 658
Nonstandard File Decl 3.5.13.1 070QA64 S Q@ P (2) F.P (21) 911
Standard File Decl 3.5.13.2 070QA8 B Q@ P (2) P (11) 658
Stringform Decl 3.5.14 N/A -
Inputlist Decl 3.5.15 070QA18 S Q@) P (5) F.P (37) 4074
Outpistlist Decl 3.5.16 070QA18 S Q (1) P (5) F.P (37) 4074

B-15

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 8

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail & .
Section Test Suite min. of wall | Fail & min. | min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
System Procedure Stmt 3.6.1 N/A N
Local Data Design 3.6.2.1 N/A N
Index Switch Block 3.6.2.1.1 N/A N
Item Switch Block 3.6.2.1.2 N/A N
Double Switch Block 3.6.2.1.3 N/A N
Local Program Decl 3.6.2.1.4 N/A N
Auto Data Design 3.6.2.2 N/A -
Procedure Block Decl 3.6.3.1 070QA7A S P (14) P (20) P.F (34) 3907
Function Block Decl 3.6.3.2 070QA7A S P (14) P (20) P.F (34) 3907
Exec Proc Block Decl 3.6.3.3 070QA22 S P (6) P (2) P (18) 804
Local Index List 3.7.1.1 N/A N
Subprogram Data Design 3.7.1.2 070QA542 S Q(@®) P (1) P (24) 1468
Imperative Stmt 3.7.2 N/A N
Set Phrase 3.7.3.1 070QA10 S P (17) P (14) P (41) 3672
070QA14 S P (8) P (9) P (24) 1880
Begin Phrase 3.7.3.2 N/A N
Return Phrase 3.7.3.3 070QA82A S P (3) F,P(2) P (15) 91

B-16

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 9

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & Quit, or Quit, or Fail & .
Section Test Suite min. of wall | Fail & min. | min. of wall Lines of
clock time of wall clock time Code
clock time (SLOC)
070QA82B S P (2) F,P (1) P (15) 110
070QA82C S Q (1) P (1) P (15) 114
Simple Goto Phrase 3.7.3.4.1 070QA83A S P (2) P (1) P (14) 47
070QA83B S P (2) P (1) P (14) 48
070QA83C S Q@) P (1) P (14) 112
Index Goto Phrase 3.7.3.4.2 070QA4 S Q@ F.P (2) P (17) 1342
Item Goto Phrase 3.7.3.4.3 070QA4 S Q@ F.P(2) P (17) 1342
User Proc Call Phrase 3.7.35.1 070QA7B S P (16) P (11) P (48) 4603
070QA86 S P (3) P (1) P (19) 439
Supplied Proc Call 3.7.3.5.2 070QA538 S Q) P (2) P (23) 2998
Phrase
PINDEX Switch Call 3.7.36.1 070QA4 S Q@) F,P(2) P (17) 1342
PITEM Call Phrase 3.7.3.6.2 N/A -
Vary Block 3.7.3.7 070QA6 S Q) P (3) F,P (28) 3294
Stop Phrase 3.7.3.8 070QA90 S Q@ P (1) P (15) 134
Resume Phrase 3.7.3.9 070QA6 S Q@ P (3) F,P (28) 3294
For Block 3.7.3.10 070QA6 S Q) P (3) F,P (28) 3294

B-17

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 10

Test Description MTASS CMS-2 File Name from Test | TRADA Pass,| APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type |[Quit, or Fail & | Quit, or Fail | Quit, or Fail)
Section Test Suite min. of wall | & min. of & min. of Lines of
clock time | wall clock | wall clock Code
time time (SLOC)
Exec Phrase 3.7.3.11 070QA23 S P (5) P (2) P (17) 903
Shift Phrase 3.7.3.12 070QA2 S Q) F.P (3) P (25) 2075
Display Phrase 3.7.3.13.1 070QA95 M Q@ P (3) P (17) 477
Snap Phrase 3.7.3.13.2 070QA95 M Q@ P (3) P (17) 477
Trace Phrase 3.7.3.13.3 070QA95 M Q@ P (3) P (17) 477
End Trace Phase 3.7.3.13.4 070QA95 M Q@ P (3) P (17) 477
Swap Phrase 3.7.3.14 070QA2 S Q@ F.P (3) P (25) 2075
3.7.3.14 070QA15 S P (13) F,P (5) P (27) 3358
Pack Phrase 3.7.3.15 070QA2 S Q@ F.P (3) P (25) 2075
Open Phrase 3.7.3.16.1 N/A -
Close Phrase 3.7.3.16.2 N/A -
Endfile Phrase 3.7.3.16.3 N/A -
DEFID Phrase 3.7.3.16.4 N/A -
CHKID Phrase 3.7.3.16.5 N/A -
FIL POS Phrase 3.7.3.16.6 N/A -

B-18

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 11

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & [Quit, or Fail | Quit, or Fail & .
Section Test Suite min. of wall | & min.of | min. of wall Lines of
clock time | wall clock clock time Code
time (SLOC)
SET POS Phrase 3.7.3.16.7 N/A -
Output to the Printer 3.7.3.16.8.1 070QA18 S Q@ P (5) F.P (37) 4074
Input Phrase 3.7.3.16.9 070QA8 B Q@ P (2) P (11) 658
070QA91 S P (3) P (1) P (15) 249
Encode Phrase 3.7.3.16.10 N/A N
Decode Phrase 3.7.3.16.11 070QA8 B Q (1) P (2) P (11) 658
Format Scan 3.7.3.16.12 N/A -
Null Phrase 3.7.3.17 N/A -
Exit Phrase 3.7.3.18 N/A -
If Clause 3.7.4.1 070QA2 S Q (1) F,P (3) P (25) 2075
Else Clause 3.7.4.2 070QA2 S Q (1) F,P (3) P (25) 2075
Find Clause 3.7.4.3 070QA2 S Q (1) F,P (3) P (25) 2075
070QA6 S Q (1) P (3) F,P (25) 3294

B-19

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 12

Test Description MTASS CMS-2 File Name from Test | TRADA Pass, | APL Pass, | CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail & .
Section Test Suite min. of wall | & min. of min. of wall Lines of
clock time | wall clock clock time Code
time (SLOC)
User Function Call 3.8.1 070QA7B S P (16) F,P (11) P (48) 4603
Predefined Function 3.8.2.1-3.8.2.22 070QA2 S Q@ F.P (3) P (25) 2075
Call
3.8.2.1-22 070QA12 S P (11) P (8) P (30) 2841
3.8.2.1-22 070QA11A S P (21) P (7) P (55) 4798
3.8.2.1-22 070QA11B S P (16) P (12) P (53) 4792
3.8.2.1-22 070QA11C S P (16) P (8) P (42) 4786
3.8.2.1 - 070QA13A S P (16) P (10) P (56) 4908
3.8.2.22
3.8.2.1-22 070QA13B S P (16) P (10) P (53) 4908
3.8.2.1-22 070QA13C S P (12) P (8) P (34) 4906
3.8.2.1-22 070QA1 S F.P (5) P (2 F.P (18) 627
3.8.2.1-22 070QA538 S Q@) P (2 P (23) 2998

B-20

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 13

Test Description MTASS CMS-2 File Name from Test TRADA Pass, | APL Pass, CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail & .
Section Test Suite min. of wall | & min. of min. of wall Lines of
clock time | wall clock clock time Code
time (SLOC)
Predefined 3.8.2.1-22 070QA538A S P (4) P (2) P (17) 674
Function Call
(continued)
3.8.2.1-22 070QA538B S P (4) P (2) P (17) 622
3.8.2.1-22 070QA538C S P (4) P (2) P (19) 925
3.8.2.1-22 070QA538D S Q (1) P (2) P (18) 979
3.8.2.1-22 070QA538E S Q (1) P (2) P (18) 995
3.8.2.1-22 070QA582 S Q (1) F,P(2) P (17) 595
3.8.2.1-22 070QA28 S P (3) P (2) P (15) 70
3.8.2.1-22 07FQA582F1 S Q (1) F,P(2) P (17) 603
3.8.2.1-22 07FQA582F2 S Q (1) F,P(2) P (17) 679
3.8.2.1-22 070QA539 S P (6) P (2) P (22) 2060
3.8.2.1-22 070QA539A S P (3) P (2) P (17) 511
3.8.2.1-22 070QA539B S P (4) P (2) P (17) 476
3.8.2.1-22 070QA539C S P (6) P (2) P (18) 795

B-21

Table B-1. Stress Testing Using MTASS Test Suite - Translation Information - 14

Test Description MTASS CMS-2 File Name from Test | TRADA Pass,| APL Pass, CCCC Pass, CMS-2
User Handbook MTASS CMS-2 Type | Quit, or Fail & | Quit, or Fail | Quit, or Fail & .
Section Test Suite min. of wall & min. of min. of wall Lines of
clock time wall clock clock time Code
Predefined 3.8.2.1-22 070QA539D S P (4) P (2) P (18) 867
Function Call
(continued)
TOTAL FAILS 6 UNIQUE 11 UNIQUE 10 UNIQUE
FAILURES FAILURES FAILURES
TOTAL UNIQUE 117.7K
SLOC INPUT TO
TRANSLATORS
TOTAL TIMES 06 HOURS 04 HOURS 31 HOURS
22 MINS. / 42 MINS. 59 MINS.
09 HOURS 30
MINS.

B-22

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 1

Test Description MTASS CMS-2 File Name from Test TRADA APL CCCC | CMS-
User Handbook MTASS CMS-2 Num 2
Section Test Suite SLOC
w/SY
SDD&
QTCO
N
Test Controller N/A SYSDD & QTCON N/A N/A N/A 1543
Delimiters 3.21 N/A
Digits 3.2.2 N/A
Decimal Digits 3.2.2.1 N/A
Octal Digits 3.2.2.2 N/A
Hexadecimal Digits 3.2.2.3 N/A
Letters 3.2.3 N/A
Name 3.24 070QA541 T51 XIXIX/ none U/U/U/ 4191 U/U/U/ | 2199
8969
Name List 3.241 N/A
Tag (EQUALS) 3.2.5 070QA20 T18 XIXIX/ none U/U/U/ 7531 U/U/U/ | 4352
14643
Compiles VAX/Sun/GNT Meaning
C Correct compilation of generated Ada code
X No Ada code generated by translator - no compile possible
U Unsuccessful Ada compilation - errors present or informational

message states that a constraint error will be raised during execution

For example, U/C/U/ 5000 means 5000 source lines of Ada code (SLOC) produced by the translator unsuccessfully compiled with VAX Ada,
correct with Sun Ada, and unsuccessful with GNAT Ada.

B-23

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 2

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Tag Term 3.25.1 N/A
Data Unit 3.2.6 N/A
Constant 3.2.7 N/A
Numeric Constant 3.2.7.1 N/A
(CMODE)
Octal Constant 3.27.1.1 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
Decimal Constant 3.2.7.1.2 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
Hexadecimal Constant 3.2.7.1.3 N/A
Character Constant 3.2.7.2 N/A
Status Constant 3.2.7.3 070QA582 T53 | X/X/X/ none U/U/U/ 4319 U/U/U/ 9650 2138
Boolean Constant 3.2.7.4 N/A
Notes (COMMENT) 3.2.75 N/A
Numeric Expression 3.2.8.1 070QA1 T1 | U/U/U/ 5723 U/U/U/ 1876 U/U/U/ 10130 2170
3.2.8.1 070QA2 T17 | X/IX/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
3.2.8.1 4300QA9 T70 Uél;/ZU/ U/U/U/ 7828 | C/C/C/ 13631 4926
1 7

B-24

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 3

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Numeric Expression 3.2.8.1 070MS1 T82 | U/C/C/ 6848 U/U/U/ 4721 U/U/U/ 10739 2622
(MSCALE)
3.2.8.1 070MS2 T83 | U/U/U/ 6823 U/U/U/ 4361 U/U/U/ 11502 2650
070MS1F1 T84 | U/C/U/ 6848 U/U/U/ 4722 U/U/U/ 10746 2647
Boolean Expression 3.2.8.2 070QA2 T17 | XIX/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
Relational Expression 3.2.8.2.1 N/A
Status Expression 3.2.8.3 N/A
Character Expression 3.2.8.4 N/A
Bit String Expression 3.2.8.5 N/A
Conditional Expression 3.2.9.1 070QA2.SCL T17 | XIX/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
070QA16 T13 | U/U/U/ 8076 U/U/U/ 6389 U/U/U/ 12025 3496
Simple Type 3.2.10 070QA584 T56 | X/IX/X/ none U/U/U/ 5637 U/U/U/ 11673 2997
Type Decl 3.2.11 070QA584 T56 | X/IX/X/ none U/U/U/ 5637 U/U/U/ 11673 2997
CMS-2 System/End 3.3.1 N/A
System Decls
3.3.2 N/A
Comments 3.3.3 N/A
CSWITCH 3.34 070QA26 T24 | C/CIC/ 3935 U/U/U/ 5054 CICIC/ 9247 2210

B-25

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 4

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 [Num SLOC
Section Test Suite w/SYSDD&
QTCON
Header Blocks 3.4.1 N/A
Options Decls 34.1 N/A
System Index Decl 3.4.3 N/A
Debug Decl 3.4.4 070QA95 T73 | X/XIX/ none U/U/U/ 5183 U/U/U/ 9902 2020
Address Counter 3.4.5 070AC1 T74 | CICIC/ 4533 U/U/U/ 4732 U/U/U/ 11272 1925
Separation Decl
3.4.5 070AD1 T75 | C/ICIC/ 4519 U/U/U/ 4347 U/U/U/ 11300 1933
Equals Decl 3.4.6 070QA32A T27 | U/U/U/ 4570 U/U/U/ 6525 U/U/U/ 9807 1971
3.4.6 070QA32B T28 | X/X/X/ none U/U/U/ 3552 C/C/C/ 9047 1627
Substitution Decl 3.4.7 070QA33 T29 | X/X/X/ none U/U/U/ 3641 U/U/U/ 9250 1850
Constant Mode Decl 3.4.8 070QA34 T30 | U/U/U/ 3850 U/U/U/ 3613 U/U/U/ 9352 1696
Executive Decl 3.4.9 N/A
Pooling Decl 3.4.10 070AD1 T75 | C/C/C/ 4519 U/U/U/ 4347 U/U/U/ 11300 1933
3.4.10 070DT1 T80 | C/C/C/ 4492 U/U/U/ 3982 U/U/U/ 11286 1920
3.4.10 070FDT1 T81 | C/C/C/ 4508 U/U/U/ 3990 U/U/U/ 11292 1923
LTAG Variable Decl 3.4.11 070QA20 T18 | X/X/X/ none U/U/U/ 7531 U/U/U/ 14643 4352
Mode Decl 3.4.12 070QA2 T17 | X/X/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
3.4.12 070QA38 T31 | X/X/X/ none U/U/U/ 3790 C/C/C/ 9533 1841

B-26

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 5

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 [Num SLOC w/
Section Test Suite SYSDD&
QTCON
Single Precision Decl 3.4.13 070QA39 T32 | U/U/U/ 4111 U/U/U/ 3575 CICIC/ 9267 1693
Parameter Passing Decl 3.4.14 070QA21C T19 | X/X/X/ none U/U/U/ 7453 U/U/U/ 13801 3310
3.4.14 070QA21D T20 | X/X/X/ none U/U/U/ 7460 U/U/U/ 13802 3307
3.4.14 070QA21R T21 | X/X/X/ none U/U/U/ 7459 U/U/U/ 13804 3308
CSWITCH Delete Decl 3.4.15 070QA43A T34 | C/C/C/ 4018 U/U/U/ 3914 CI/C/IC/ 9263 2220
3.4.15 070QA43B T35 | C/C/C/ 4068 U/U/U/ 4248 CIC/C/ 9282 2169
Spill Decl 3.4.16 070QA44A T36 | C/U/U/ 3646 U/U/U/ 3512 U/U/U/ 9166 1602
3.4.16 070QA44B T37 | C/U/U/ 3755 U/U/U/ 3616 U/U/U/ 9491 1651
Scaling Mode Decl 3.4.17 N/A
System Data Design 3.5.1 N/A
Direct Code Block 3.5.2 070DC1 T76 | XIX/IX/ none U/U/U/ 4535 U/C/U/ 688 4431
3.5.2 070DCER1 T77 | CICIC/ 315 CICIC/ 250 U/U/U/ 91 274
3.5.2 070DCERTR T78 | C/C/U/ 3678 U/U/U/ 3433 C/C/C/ 8912 1633
3.5.2 070DECRTRML | T79 | C/CIC/ 3627 U/U/U/ 3445 C/C/C/ 8922 1614
Table Decl 3.5.3 N/A

B-27

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 6

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Field Decl 3.53.1 07FQA10F2 T3 u/u/u/ U/U/U/ 8316 C/U/U/ 14018 5349
11411
070QA17 T14 | XIX/X/ none U/U/U/ 7366 U/U/U/ 13760 3467
070QA16 T13 | U/U/U/ 8076 U/U/U/ 6389 U/U/U/ 12025 3496
070QA14 T11 | U/U/U/ 7167 U/U/U/ 7684 U/U/U/ 11910 3423
Like-Table Decl 3.5.3.2 N/A
Item-Area Decl 3.5.3.2 N/A
Sub-Table Decl 3.5.34 070QA19 T16 c/C/C/ U/U/U/ 7584 U/U/U/ 15551 5255
11593
Field-Overlay Decl 3.5.35 070QA3 T26 | XIX/X/ none U/U/U/ 4896 U/U/U/ 11333 2519
Modifier 3.5.4 070QA53 T39 | X/IX/IX/ none U/U/U/ 3885 U/U/U/ 9838 1864
External Program Decl 3.55 N/A
Variable Decl 3.5.6 N/A
Procedure Sw BI 3.5.7 070QA5 T38 | U/U/U/ 4618 U/U/U/ 4216 U/U/U/ 9850 1993
PINDEX Decl 3571 N/A
PITEM Switch Block 3.5.7.2 N/A
PDOUBLE Switch 3.5.7.3 N/A
Parameter Decl 3.5.8 070QA2 T17 | X/IX/X/ none U/U/U/ 7275 U/U/U/ 12616 3618

B-28

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 7

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Overlay Decl 3.5.9 070QA3 T26 | X/X/X/ none U/U/U/ 4896 U/U/U/ 11333 2519
3.5.9 070QA60 T58 | U/U/U/ 5838 U/U/U/ 5038 U/U/U/ 16954 2562
Data Statement 3.5.10 N/A
Range Decl 3.5.11 070QA95 T73 | X/IX/X/ none U/U/U/ 5183 U/U/U/ 9902 2020
Format Decl 3.5.12 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
Nonstandard File Decl 3.5.13.1 070QA64 T59 | X/X/X/ none U/U/U/ 4795 U/U/U/ 11219 2454
Standard File Decl 3.5.13.2 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
Stringform Decl 3.5.14 N/A
Inputlist Decl 3.5.15 0700QA18 T15 | X/X/X/ none U/U/U/ 9317 U/U/U/ 15664 5617
Outpistlist Decl 3.5.16 0700QA18 T15 | X/X/X/ none U/U/U/ 9317 U/U/U/ 15664 5617
System Procedure Stmt 3.6.1 N/A
Local Data Design 3.6.2.1 N/A
Index Switch Block 3.6.2.1.1 N/A
Item Switch Block 3.6.2.1.2 N/A
Double Switch Block 3.6.2.1.3 N/A
Local Program Decl 3.6.2.1.4 N/A

B-29

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 8

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Auto Data Design 3.6.2.2 N/A
Procedure Block Decl 3.6.3.1 070QA7A T60 u/u/u/ u/u/u/13177 XIXIX/ none 5450
13432
Function Block Decl 3.6.3.2 070QA7A T60 u/u/u/ u/u/u/13177 XIXIX/ none 5450
13432
Exec Proc Block Decl 3.6.3.3 070QA22 T22 | U/U/U/ 5982 U/U/U/ 4601 U/U/U/ 10089 2347
Local Index List 3.7.1.1 N/A
Subprogram Data Design 3.7.1.2 070QA542 T52 | XIX/X/ none U/U/U/ 5355 U/U/U/ 12966 3011
Imperative Stmt 3.7.2 N/A
Set Phrase 3.7.3.1 070QA10 T2 u/u/u/ U/U/U/10951 | C/U/U/ 13249 5215
11145
070QA14 T11 | U/U/U/ 7167 U/U/U/ 7684 U/U/U/ 11910 3423
Begin Phrase 3.7.3.2 N/A
Return Phrase 3.7.3.3 070QA82A T63 | C/C/C/ 3763 U/U/U/ 4015 U/U/U/ 8994 1634
070QA82B T64 | C/C/IC/ 3776 U/U/U/ 3648 U/U/U/ 8998 1653
070QA82C T65 | X/X/X/ none U/U/U/ 3245 U/U/U/ 9030 1657

B-30

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 9

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Simple Goto Phrase 3.7.3.4.1 070QA83A T66 | C/C/C/ 3607 U/U/Uf 3117 U/U/U/ 8923 1590
070QA83B T67 | C/C/C/ 3608 U/U/U/ 3118 U/U/U/ 8924 1591
070QA83C T68 | X/X/IX/ none U/U/U/ 3242 U/U/U/ 9053 1655
Index Goto Phrase 3.7.3.4.2 070QA4 T33 | XIX/IX/ none U/U/U/ 4640 U/U/U/ 9834 2885
Item Goto Phrase 3.7.3.4.3 070QA4 T33 | X/X/X/ none U/U/U/ 4640 U/U/U/ 9834 2885
User Proc Call Phrase 3.7.35.1 070QA7B T61 u/u/u/ U/U/U/13013 U/U/U/ 17462 6146
17738
070QA86 T69 | C/C/C/ 4545 U/U/U/ 3702 U/U/U/ 10724 1982
Supplied Proc Call Phrase 3.7.3.5.2 070QA538 T40 | X/IX/IX/ none U/U/U/ 6976 U/U/U/ 12246 4541
PINDEX Switch Call 3.7.3.6.1 070QA4 T33 | XIX/IX/ none U/U/U/ 4640 U/U/U/ 9834 2885
PITEM Call Phrase 3.7.3.6.2 N/A
Vary Block 3.7.3.7 070QA6 T57 | XIXIX/ none U/U/U/ 8340 U/U/U/ 14626 4837
Stop Phrase 3.7.3.8 070QA90 T71 | XIX/IX/ none U/U/U/ 3266 U/U/U/ 9058 1677
Resume Phrase 3.7.3.9 070QA6 T57 | X/IX/X/ none U/U/U/ 8340 U/U/U/ 14626 4837
For Block 3.7.3.10 070QA6 T57 | XIXIX/ none U/U/U/ 8340 U/U/U/ 14626 4837
Exec Phrase 3.7.3.11 070QA23 T23 | U/U/U/ 5652 U/U/U/ 5030 U/U/U/ 9895 2446
Shift Phrase 3.7.3.12 070QA2 T17 | X/IX/X/ none U/U/U/ 7275 U/U/U/ 12616 3618

B-31

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 10

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 [Num SLOC w/
Section Test Suite SYSDD&
QTCON
Display Phrase 3.7.3.13.1 070QA95 T73 | X/IX/X/ none U/U/U/ 5183 U/U/U/ 9902 2020
Snap Phrase 3.7.3.13.2 070QA95 T73 | XIX/IX/ none U/U/U/ 5183 U/U/U/ 9902 2020
Trace Phrase 3.7.3.13.3 070QA95 T73 | X/X/X/ none U/U/U/ 5183 U/U/U/ 9902 2020
End Trace Phase 3.7.3.13.4 070QA95 T73 | X/X/X/ none U/U/U/ 5183 U/U/U/ 9902 2020
Swap Phrase 3.7.3.14 070QA2 T17 | XIX/IX/ none U/U/U/ 7275 U/U/U/ 12616 3618
3.7.3.14 070QA15 T12 u/u/u/ U/U/U/ 9089 U/U/U/ 13018 4901
14714
Pack Phrase 3.7.3.15 070QA2 T17 | X/X/X/ none U/U/Ul 7275 U/U/U/ 12616 3618
Open Phrase 3.7.3.16.1 N/A
Close Phrase 3.7.3.16.2 N/A
Endfile Phrase 3.7.3.16.3 N/A
DEFID Phrase 3.7.3.16.4 N/A
CHKID Phrase 3.7.3.16.5 N/A
FIL POS Phrase 3.7.3.16.6 N/A
SET POS Phrase 3.7.3.16.7 N/A
Output to the Printer 3.7.3.16.8.1 070QA18 T15 | X/X/X/ none U/U/U/ 9317 U/U/U/ 15664 5617

B-32

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 11

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 [Num SLOC w/
Section Test Suite SYSDD&
QTCON
Input Phrase 3.7.3.16.9 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
070QA91 T72 | C/IC/C/ 4140 U/U/U/ 3367 U/U/U/ 9288 1792
Encode Phrase 3.7.3.16.10 N/A
Decode Phrase 3.7.3.16.11 070QA8 T62 | X/X/X/ none U/U/U/ 4535 U/U/U/ 11648 2201
Format Scan 3.7.3.16.12 N/A
Null Phrase 3.7.3.17 N/A
Exit Phrase 3.7.3.18 N/A
If Clause 3.74.1 070QA2 T17 | X/X/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
Else Clause 3.7.4.2 070QA2 T17 | X/X/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
Find Clause 3.74.3 070QA2 T17 | X/X/X/ none U/U/U/ 7275 U/U/U/ 12616 3618
070QA6 T57 | X/X/X/ none U/U/U/ 8340 U/U/U/ 14626 4837
User Function Call 3.8.1 070QA7B T61 | U/U/U/ 17738 U/U/U/ 13013 U/U/U/ 17462 6146
Predefined Function Call 3.8.2.1 - 070QA2 T17 | X/X/IX/ none U/U/U/ 7275 U/U/U/ 12616 3618
3.8.2.22
3.8.2.1-22 070QA12 T7 U/lé/USI U/U/U/ 8489 U/U/U/ 13765 4384
1185

B-33

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 12

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCcCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Predefined Function Call 3.8.2.1-22 070QA11A T4 u/u/u/ U/U/U/ 10817 | U/U/U/ 16486 6341
(continued) 17417
3.8.2.1-22 070QA11B T5 u/u/u/ U/U/U/ 10815 | U/U/U/ 16471 6335
17413
3.8.2.1-22 070QA11C T6 u/u/u/ U/U/U/ 10809 | U/U/U/ 16014 6329
15865
3.8.2.1- 070QA13A T8 u/u/u/ U/U/U/ 11198 | U/U/U/ 16649 6451
17187
3.8.2.22
3.8.2.1-22 070QA13B T9 u/u/u/ U/U/U/ 11197 | U/U/U/ 16609 6451
17184
3.8.2.1-22 070QA13C T10 u/u/u/ U/U/U/ 9543 U/U/U/ 14459 6449
13589
3.8.2.1-22 070QA1 T1 | U/U/U/ 5723 U/U/U/ 1876 U/U/U/ 10130 2170
3.8.2.1-22 070QA538 T40 | X/X/XI none U/U/U/ 6976 U/U/U/ 12246 4541
3.8.2.1-22 070QA538A T41 | U/U/U/ 4910 U/U/U/ 4115 U/U/U/ 10111 2217
3.8.2.1-22 070QA538B T42 | U/U/U/ 4679 U/U/U/ 4203 U/U/U/ 10004 2165
3.8.2.1-22 070QA538C T43 | U/U/U/ 5593 U/U/U/ 4507 U/U/U/ 10386 2468
3.8.2.1-22 070QA538D T44 | XIXIXI none U/U/U/ 4382 U/U/U/ 10390 2522
3.8.2.1-22 070QA538E T45 | X/XIXI none U/U/U/ 4408 U/U/U/ 10273 2538

B-34

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 13

Test Description MTASS CMS-2 File Name from | Test TRADA APL CCCcC CMS-2
User Handbook MTASS CMS-2 | Num SLOC w/
Section Test Suite SYSDD&
QTCON
Predefined Function Call 3.8.2.1-22 070QA582 T53 | X/XIX/ none U/U/U/ 4319 U/U/U/ 9650 2138
(continued)
3.8.2.1-22 070QA28 T25 | U/U/U/ 3690 U/U/U/ 3865 U/U/U/ 8969 1613
3.8.2.1-22 07FQA582F1 T54 | X/X/X/ none U/U/U/ 4324 U/U/U/ 9635 2146
3.8.2.1-22 07FQA582F2 T55 | X/X/X/ none U/U/U/ 4319 U/U/U/ 9605 2222
3.8.2.1-22 070QA539 T46 | C/C/C/ 6489 U/U/U/ 6022 U/U/U/ 11463 3603
3.8.2.1-22 070QA539A T47 | C/C/IC/ 4381 U/U/U/ 3084 U/U/U/ 9904 2054
3.8.2.1-22 070QA539B T48 | C/C/C/ 4398 U/U/U/ 3938 C/UIC/ 9922 2019
3.8.2.1-22 070QA539C T49 | C/C/C/ 4858 U/U/U/ 4165 C/U/U/ 10185 2238
3.8.2.1-22 070QA539D T50 | C/C/C/ 5002 U/U/U/ 4414 C/U/U/ 10252 2410

B-35

Table B-2. Stress Testing using MTASS Test Suite - Compile Information - 14

Test Description TRADA APL CCcCcC CMS-2
SLOC w/
SYSDD&
QTCON
TOTAL LINES of CODE 385.0K/ 468.3K / 923.7K / 242 .6K
598.9K" 468.9K* 925.7K
VAX CORRECT 24 of 84 1of 84 14 of 84

COMPILATION %

compilable — 29%
(24 of 54
compilable — 44 %)

compilable — 1%

compilable — 17 %
(14 of 83
compilable — 17 %)

Sun CORRECT
COMPILATION %

24 of 54
compilable — 44%

1 of 84

compilable — 1%

10 of 83

compilable — 12%

GNAT CORRECT
COMPILATION %

22 of 54

compilable — 41%

1 of 84

compilable — 1%

10 of 83

compilable -12 %

! Estimated SLOC assuming all files translated
2 For these numbers, the predefined packages are counted once.

3 Percentage compilable based on actual number of files produced by translator.
B-36

Table B-3. Translating and Compiling Using Project-Contributed Legacy CMS-2 Source Code - 1

Project and CMS-2
Lines of Code (SLOC)

TRADA Translator on VAX/VMS

APL Translator on Sun/OS

CCCC Transformer on VAX/VMS

Extra Low Frequency
Communications (ELF)

9,988 SLOC

P (6 minutes)
uU/U/U/ 17,870 SLOC

Two parameters on OPTIONS
statement, TAPE and ASM, were
unrecognizable by TRADA and had
to be removed to continue

P (1 minute)
U/U/U/ 3,534 SLOC

P (14 minutes)
U/U/U/ 11,226 SLOC

The errors for all three compilers for all three ELF translations resulted mainly from Use clauses for missing
Ada package AMTOO02, whose CMS-2 source code was not available.

Combat Control
System MK-2 Fire
Control System

F (1 minute — aborted)

421 SLOC XIXIX!/ no Ada generated

TRADA constraint error

P (1 minute)
U/U/U/ 370 SLOC

P (2 minutes)

C/U/U/ 936 SLOC

An END-HEAD statement was added to the MK2 major header to provide syntactic correctness.

Compile Results

Meaning
C Correctly compiled of generated Ada code
U Unsuccessful Ada compile — errors present
X No Ada code generated by translator — no compile

possible

B-37

Table B-3. Translating and Compiling Using Project-Contributed Legacy CMS-2 Source Code - 2

Project and CMS-2
Lines of Code (SLOC)

TRADA Translator on VAX/VMS

APL Translator on Sun/OS

CCCC Transformer on
VAX/VMS

S3-Aircraft Tactical
Mission Program (TMP)

1,391 SLOC

Q (1 minute)
XIXIX!/ no Ada generated

TRADA reported 279 occurrences of
missing identifiers, and terminated

P (1 minute)
U/U/U/ 1,183 SLOC

P (7 minutes)

U/U/U/ 4,148 SLOC

An incomplete CMS-2 compile time system was built from the S3-TMP code pieces provided in order to
attempt translation. The code was included into one SYS-DD and two SYS-PROC-RENSs. More code would be

needed for a viable translation.

AEGIS SPY UYK-43
Timing Loop

2,841 SLOC

P (3 minutes)

C/C/C/ 3,965 SLOC

P (3 minutes)

U/U/Ul 2,447 SLOC

P (5 minutes)

U/U/U/ 3,640 SLOC

The two SYS-PROCs provided were combined into one CMS-2 compile time system for input to the

translators.

B-38

Table B-3. Translating and Compiling Using Project-Contributed Legacy CMS-2 Source Code - 3

Project and CMS-2 TRADA Translator on VAX/VMS APL Translator on Sun/OS CCCC Transformer on
Lines of Code (SLOC) VAXIVMS

H60B Helo Datalink
Upgrade-ACASS
module

P (4 minutes) P (1 minute) P (11 minutes)
4,725 SLOC U/U/U/ 6,534 SLOC U/U/U/ 1,448 SLOC U/U/U/ 5,987 SLOC

All ACASS multiple nested includes (MTASS/M form) were combined into a single CMS-2 compile time system
for input to the translators.

B-39

CONCLUSIONS

1. All trandators had catastrophic failures during stress testing. The developers were very
responsivein fixing these translator deficiencies with an average turnaround of two working
days.

2. Most source code produced by the translators did not compile correctly without manual changes.

3. When using the translators a project will see anincreasein theratio of Adato CMS-2 SLOC
counts from approximately 2:1 to 4:1 depending on the translator sdected and the CMS-2
constructs being translated (See Table B-2, 14). The code expansion is due not only because of
differences in the two languages but also because during translation blank lines are inserted for
readability, in some cases error messages are generated as comments, and predefined packages
are produced.

4. Only the CCCC trandator translated overlay. The correct execution of the translated overlays
was not verified.

B-40

APPENDIX C: RESULTS OF REENGINEER UNTIL ADA CODE
EXECUTES CORRECTLY

OVERVIEW

This section presents results of the Reengineer Until Ada Code Executes Correctly phase of the
evaluation. Versions of the translators used were the developers final revisions ddivered after
problems causing translator failure were corrected. In this phase, the effort to take a CM S-2-based
program from translation to correct functional execution of the generated Ada version was measured
for each of the trangdlators. These data were recorded as person-hours devoted to each stage of the
process and number of source lines of code added and modified.

It was noted that there was no baseline against which to compare the properties of translated code
and the effort required to reengineer it to execute correctly. A decision was made to generate such a
basdline and the resulting metrics were included with those of the translator-generated code. The
Reengineer Until Ada Code Executes Correctly phase of evaluation constitutes a small case study
of CMS-2 to Ada translation. The metrics obtained will assist CMS-2 project managers in generating
cost and schedule estimates for using automated CM S-2 to Ada translation.

Theinitial phase, Conduct Quick Look I nspection Using Small CM S-2 Sample, paved the way
for execution testing described in this appendix. Under Quick Look | nspection QA9 CMS-2 source
code was compiled, linked with a test harness, and executed to provide basdline execution results.
Then QA9 CMS-2 was trandlated by each tranglator and the generated Ada was repeatedly submitted
to the Ada compilers and reworked until it compiled.

Tranglator evaluation continued inthe Reengineer Until Ada Code Executes Correctly phase.
The Ada QA9 source code was compiled, linked with the test harness, and executed. The Ada
harness was produced by reengineering the CM S-2 test harness, trandating, and reengineering in
Ada. The Ada generated for QA9 was reengineered until execution produced results at least as
accurate as the CM S-2 execution results.

The QA9 program was taken from CM S-2 trandlation to correct execution in Ada for the seven
combinations of translators and compilers listed below. The APL and CCCC QA9 trandations were
not taken to correct execution when compiled with VAX Ada dueto alack of time.

1. APL trandation compiled with GNAT,

APL tranglation compiled with SunAda,

CCCC trandation compiled with GNAT,
CCCC trandation compiled with SunAda,
TRADA translation compiled with GNAT,
TRADA trandation compiled with SunAda, and
7. TRADA tranglation compiled with VAX Ada.

The QA9 program contains saf checking arithmetic tests that compare computed with expected
results. Informational messages are printed when results do not match and summary information is

o o b~ w0 DN

C-1

printed at the conclusion of program execution. Translators bracketed QA9 harness related direct
code inside Ada comments. No direct code was required for execution.

This appendix presents a high-level summary of the results of this phase. The section is intended
for managers considering translation as an aid to program generation.

Results include:

? Tablesthat show quantity of sourcelines of code at different stages of the reengineering
process

? Tablethat indicates the difficulty in conversion as measured by person-hours

? Tablethat indicates difficulty in conversion as measured by Ada source code
modifications required to achieve correct execution

? Discussion of redesign/rewrite of QA9 in Ada 95

? Tablesthat compare weighted M cCabe cyclomatic complexity and program sizefor CMS-
2 and Ada versions of QA9.

Appendix F is alog containing details of the steps followed to achieve correct execution in Ada.
Theintended audience is software engineers considering translation as a code generation method.
Appendix F includes a description of the source code corrections made for compilation and correct
execution.

LINE COUNT COMPARISONS

Table C-1 contains line counts for QA9 as tranglated, compiled, and executed by the APL, CCCC,
and TRADA tranglators. Line counts include the predefined utilities which were produced or
provided by the translators and are required by all translated programs. The second row from the
bottom shows the line count for Ada 95 QA9, the redevel oped equivalent to QA9. Therewas a
substantial reduction in the number of lines of source code for Ada 95 QA9. QA9 CMS-2 line counts
are included for comparison purposes.

Table C-2 shows the line counts for the predefined utilities for QA9. The predefined utilities are
Ada packages that contain type declarations and functions used by the trandlated code. Theseline
counts are constant for all trandations when using the APL and CCCC trandators. The counts are
different for TRADA, since only what was required was produced.

C-2

Table C-1. QA9 Source Lines of Code by Translator at Various Stages (Includes Predefined)-1

Delimiting semicolons Comments Statements of text
QA9 Translated by APL
Translated 4650 5855 7570
Compilation with GNAT 4856 6061 7776
Compilation with Sun Ada 4856 6061 7776
Correct execution GNAT 4875 6484 8496
Correct execution Sun Ada 4874 6487 8498
QA9 Translated by CCCC
Translated 9632 1667 15657
Compilation with GNAT 9634 1669 15660
Compilation with Sun Add 9660 1675 15720
Compilation with VAX Ada 9631 1661 15653
Correct execution GNAT 9653 1675 15712
Correct execution Sun Ada’ 9660 1675 15720
QA9 Translated by TRADA
Translated 4725 2700 10227
Compilation with GNAT 4726 2719 10245
Compilation with Sun Ada 4726 2719 10245
Compilation with VAX Ada 4952 2866 10378
Correct execution GNAT 4948 3388 11348
Correct execution Sun Ada 4948 3388 11348
Correct execution VAX Ada 4952 2866 10245
QA9 Redesigned & 1675 438 5879
Rewritten in Ada 95*
QA9 CMS-2 3568 785 4326

! Estimated counts because actual numbers were not kept
2 Includes modiifications due to Sun Ada compiler bug (3 ddimiting ; & 2 text statements)
% Includes statements for debugging purposes (17 ddimiting ; & 33 text statements)

* Because of the design and evolution of this test code, great improvements could be made in code efficiency.
Reengineering of most legacy codeis likely to result in substantial improvements, but perhaps not as dramatic as
achieved here,

C-3

Table C-2. QA9 Predefined Utilities Source Lines of Code by Translator

Delimiting Comments | Statements of text
semicolons
APL (BASIC_DEFNS) 317 165 642
CCCC (PREDEFINEDS) 1203 432 2022
TRADA (CMS-2 TYPES) 225 29 459

DIFFICULTY OF CONVERSION METRICS

Table C-3 shows the Difficulty of Conversion Hours metric for the APL, CCCC, and TRADA
trandators. For each translator QA9 was taken from generation to correct execution using the
compilersindicated in thistable. Difficulty of Conversion Hours is the sum of person-hours spent to
achieve compilation plus person-hours spent to achieve correct execution.

The authors had to decide whether to perform the conversion for each compiler from the original
trandiated code or to take the product of conversion using one compiler as input into the process of
conversion by the other. The thoroughness of the Ada standard makesiit likely that a program
compiled by one compiler will compile with little or no modification by another. Following the first
approach would mean that the learning that would have taken place during conversion using one
compiler would shorten the time taken in the conversion process for another. This is because most of
therequired corrections for the second conversion effort would be known ahead of time. Following
the second approach would mean that the second conversion would measure only the incremental
effort to get a correctly executing program to compile and execute using another compiler. Since the
first approach would be biased and would require duplicate effort, the second approach using SLOC
was followed.

Table C-4 shows the Difficulty of Conversion SLOC metric for the three trandlators. The method
used for computing SLOC and some problems involved in comparing SLOC metrics are described in
appendix D. Theissue of how to count lines of code that are moved from one location to another
was resolved as counting each line moved as one change.

The APL trandator had numerous Ada syntax and semantic errors. The most common error
encountered was with APL producing Ada code that contained floating point exponents. Type
casting these exponents to integer solved those problems but upon running QA9, 82 execution errors
were reported similar to the TRADA trandlator. This was because Ada 83 does not have sufficient
precision to pass the exponentiation test suite. The program was modified using Ada 95 which can
handle floating point exponents so later executions reported no errors.

C-4

Table C-3. QA9 Difficulty of Conversion Person Hours

Hours to achieve Hours to achieve Difficulty of Conversion
compilation correct execution Hours (Total)
APL

GNAT 9 18 27

Sun Ada 0 1 0
CCcCcC

GNAT 1 2 3

Sun Ada 1 8 9
TRADA

GNAT 0 0 0

Sun Ada 1 0 (6)* 1(7)*

VAX Ada 2 1 3

The CCCC trandator assumed the existence of package“ Math_Lib” which was presumed to
contain the appropriate exponentiation operator, but “ Math_Lib” was not contained in the generated
code. Therefore, access to the an appropriate mathematical library was sufficient to remedy that
problem. The APL translator also relied on the existence of an exponentiation operator for a floating
point exponent but did not provide the operator. Although both the CCCC and APL implementations
were incomplete with respect to exponentiation, the assumption of a different exponentiation
operator, and the consequent difference in execution behavior is not incorrect.

The CCCC-generated code also presented an access-before-daboration problem (see Section 5,
Recommendations to Translator Vendors) which was relatively difficult to analyze and represents the
majority of time consumed in converting the CCCC code.

Table C-4 indirectly reflects an ambiguity in the definition of “ correct execution.” The
modifications made to the TRADA-generated code to achieve execution with no errors reported by
the executing program were of two kinds. Thefirst kind of modification was made to achieve
compilation on Sun SPARC platforms. Sun SPARC apparently does not support the specification of
afloating point type that was presumably supported on the CM S-2 targeted platform. The
modification was not required for execution on DEC VAXes and was not one of having generated
incorrect code. It was a portability problem. The second kind of modification was made because
TRADA generated code that only used Ada 83 standard mathematical functions. The QA9 test suite
was designed to detect errors in mathematical precision. Therefore, TRADA-generated code
executed correctly when it reported 82 execution errors because it correctly indicated that the Ada 83

! The number in parenthesisis the time required to fully implement exponentiation with a floating point exponent.
These additional hours would not be required for conversion to Ada 95.

C-5

does not have sufficient precision to pass the exponentiation test suite. One can legitimately state that
the TRADA code was correct “as generated” and was also the most portable of the three generated
samples. Neverthdess, the program was modified to the point that when executed, it reported no
errors. Those difficulty of conversion data appear in parentheses in tables C-3 and C-4.

Access to an exponentiation operator for a floating point exponent was required for the TRADA-
generated code to achieve execution with no reported errors. This required 98 SLOC modifications
and was made by accessing package Ada.Numerics.Generic_Elementary Functions for GNAT
compilation and by accessing the Sun Ada standard math library for the Sun Ada compiler.

The difficulty of conversion metrics, while meaningful, cannot simply be extrapolated on the
basis of SLOC to achieve a levd-of-effort estimate for alegacy system. QA9, including harness,
contained no direct code or low-level operations necessary for execution, and was sdected for this
study becauseits trandlation was thought to be feasible. It also has relatively simple requirements.
Asaresult, it is probably not representative of many legacy systems.

Table C-4. QA9 Difficulty of Conversion SLOC

SLOC added or SLOC added or Difficulty of Conversion
modified for modified for correct SLOC (Total)
compile execution
APL
GNAT 206 225 431
Sun Ada 206 224 430
CCcCcC
GNAT 2 28" 30
Sun Ada 9 28’ 37
TRADA
GNAT 6 0 (98)* 6 (104)*
Sun Ada 4 0 (98)* 4 (102)*
VAX Ada

WEIGHTED MCCABE AND PROGRAM SIZE METRICS

Table C-5 shows the weighted M cCabe cyclomatic complexity
((Si=L.n(SLOC*V(G)i))/(Si=1.nSLOG)) for the CMS-2 QA9 and the trandlator-generated Ada

117 lines were added for debugging purposes
2 3 lines were added to compensate for a bug in the Sun Ada compiler
% The number in parenthesis is the SLOC required to fully implement exponentiation with a floating point exponent

C-6

QA9 programs. A discussion of this metric is found in Appendix D. Theinformation in this table
and the information in Figure A-3 combine to yield important insight into the differences in amount
and distribution of control complexity between the three translators. As can be seen in Table C-5,
each tranglator-generated value for weighted V(G) is within 2% of the others. Figure A-3 shows that
the distribution of V(G) across subprograms is also very similar among translator-based QA9
programs. However, Table C-5 also indicates that the CMS-2 QA9 has substantially more complexity
than the translator-based QA9 programs. This differenceis present because of a CM S-2 construct,
procedure switch, that is counted as having higher complexity than its Ada counterpart, the case
statement. When this section of CMS-2 code was visually compared to its Ada counterpart, its
control structure appeared to be very similar.

Table C-5. QA9 Weighted McCabe Complexity Metric

QA9 Version Weighted McCab_e Complexity
Metric
CMS-2 QA9 92 (343143/3733)"
Ada QA9 produced by APL 65 (235132/3594Y
Ada QA9 produced by CCCC 67 (234126/3500)
Ada QA9 produced by TRADA 66 (236813/3572)
Ada 95 QA9 Redesigned/Rewritten® 1.1 (1802/1677)

Table C-6, Program Size, shows another revealing aspect of the QA9 programs. This shows the
number of executable statements as measured by the CM S-2 source code Metrics Generator and by
Logiscope. In this case, the Ada version of QA9 with the largest number of executable statements has
fewer than 19% (3887-3297)/3297) more executable statements than the CMS-2 version. Thereis
more variability in Halstead program length than in executable statements, however, average
statement complexity (program length/executabl e statements) is relatively similar, with the Ada
programs at the extremes.

Thedatain Table C-5 and C-6, and in Figure A-2 and A-3 indicate that the CM S-2 ancestor and
the trandator-generated Ada versions of QA9 are very similar in structure, content, and size. This
leads to the unremarkable but important implication that translator output will be very similar to
trandator input in structure, content, and size.

1 SL.OC counts used in CMS-2 calculation are straight lines of text. CMS-2 complexity is due to alarge extend
because of a complex “if statement” in QA9A (QA9A V(G) = 194).

2 SL.OC counts used in Ada are counted by Logiscope.

3 Because of the design and evolution of this test code, great improvements could be made in code efficiency.
Reengineering of most legacy codeis likely to result in substantial improvements, but perhaps not as dramatic as
achieved here,

C-7

ADA 95 QA9: REENGINEERING A MIXED-MODE MATH TEST IN ADA 95

The decision to generate a basdine against which to compare the properties of translator-produced
code and the effort required to use translation was based primarily on three considerations. The
requirements were relatively simple and well-understood. The program, Ada 95 QA9, could also be
produced in areatively short amount of time. Finally, the resulting program metrics would provide
an objective measure of the potential differences between redevelopment and translation.

Application redevelopment affords many opportunities for improvement during legacy system
migration via requirement-leve reengineering, exploiting modern language features, and design for
reuse. Requirement-leve reengineering in this case means reconsidering functionality ina CMS-2
application and generating a design and implementation that meets the requirements provided by that
functionality. Additional requirements may be put in place such as reducing potential maintenance
cost or improving performance. In this exercise an artificially-imposed new requirement was to
reduce potential maintenance costs as indicated by V(G) (McCabe cyclomatic complexity) and to
enhance reusability.

The CMS-2 QA9 program tests accuracy of certain mathematical operations and places an
emphasis on mixed-mode arithmetic. It tests various combinations of integer, real, and fixed point
operands and targets. Ada 95 QA9 framed the solution as the repetitive application of the
pattern opl = op2 infix-op op3 using three numeric types and five kinds of infix operations. Since
there are three different numeric types for each of the operands opl, op2, and op3, and five different
valuesfor infix-op (i.e, +, -, /, *, **), the number of basic kinds of test casesis135(3* 3* 5* 3).
However, since thereis no available exponentiation (**) operator for fixed point types, 9 must be
subtracted from 135 to yield a total of 126 basic kinds of test cases. There must also be an accuracy
constraint on the result so that the pattern lower-bound <= opl <= upper-bound must also be a part
of the solution. Appendix H contains a more detailed explanation of the Ada 95 QA9 design.

As seen in Table C-5, the weighted M cCabe complexity (V(G)) for the Ada 95 QA9 (1.1) was
less than 2% of the values for the tranglator-generated QA9 programs (65-67). Keep in mind that a
M cCabe complexity greater than 50 is considered to be incomprehensible and lessthan 5 are
considered simple and easy to understand. The dramatic reduction was due to the approach taken for
test case selection and execution. The translator-generated QA9s used conventional if-then-else and
goto semantics. However, Ada 95 QA9 defined separate test cases as subclasses (using Ada 95
Object-Oriented capabilities) and relied on the Ada 95 run-time dispatcher for polymorphic
operations to select the appropriate subprogram (i.e., method) to execute for each test case. Ada-
ASSURED was also invoked to check conformance to Software Productivity Consortium (SPC) Ada
guiddines. There was 100% conformance with SPC guiddines.

Table C-6 also indicates a dramatic reduction in the number of executable statements required to
perform the test. An executable statement is statement between a “begin” and “end” that isnot in a
declarative block. While the other QA9 programs did execute more test cases the comparison of
number of executable statementsis still valid. Thisis because in Ada 95 QA9, the number of
executable statements is independent of the number of test cases executed. Halstead program length
and average statement complexity (executable statements/Halstead program length) is also givenin
thetable. Appendix D explains Halstead program length.

Thirty hours were required to develop Ada 95 QA9. Thisincludes thetime required for an
experienced Ada 83 developer to gain a sufficient understanding of the object-oriented features of

C-8

Ada 95. The Ada 95 QA9 experiment shows that significant improvements in certain indicators of
software maintenance cost can be obtained through redevel opment. However, many factors must be
taken into account when deciding what course of action to take with respect to a legacy system.
Redevelopment may be an appropriate choice under certain circumstances.

Table C-6. QA9 Program Size

Executable Halstead Avg. Statement
Statements Program Complexity
Length
CMS-2 QA9 3297 15609 4.73
APL 3642 14710 4.04
CCccC 3887 19547 5.03
TRADA 3759 22037 5.86
Ada 95 QA9 391 - -

CONCLUSIONS

1. Thethreetrandators studied are capable or nearly capable of generating Ada programs that
compile and execute correctly. 2

2. All threetrandators produced versions of QA9 that were very similar in complexity, content, and
program size (executable statements, Halstead program length, average statement length).

3. TheCMS-2 QA9 was very similar in complexity, content, and program size to the translator-
generated Ada versions.

4. Thequality of generated output will be approximately the same as the CMS-2 inpui.

5. Only use effort metrics for making “ballpark” estimates of the effort required to translate a
CMS-2 system. Thisis true because of the small sample size (1), questions about the
representativeness of the QA9 application, and the uniquensss of each application. Person hours
must be adjusted upward to account for direct code, overlays, device dependent 1O, and other
differences.

6. No significant difference in the difficulty to convert code was found between the three
translators.

! L ogiscope does not calculate Halstead metrics on Ada 95 source code.
2 This assessment did not address the difficulty of converting direct code, overlays, or device-dependent 10.

C-9

. Ada 95 isabetter trandation target than Ada 83 for many reasons, one of which is the
availability of more mathematical functions.

. Dramatic improvements in quality indicators through redevelopment are a possibility. This
option should be given serious consideration when maintenance cost is a significant concern.

C-10

APPENDIX D: METRICS INTERPRETATION

The purpose of this appendix is to provide an explanation of the metrics maintained during the
trandlator evaluation process. The outline below shows the metrics collected. Metrics are grouped
by intended use. Tools used to calculate metrics are included in parentheses.

? Characterizethe CMS-2 Source Code
M cCabe Cyclomatic Complexity (METRC)
Halstead Metrics (METRC)
Source lines of code (METRC)
? Examinethe quality of the Ada source code produced
M cCabe Cyclomatic Complexity (L ogiscope)
Halstead Metrics (L ogiscope)
Software Productivity Consortium Ada quality and style guidelines (Ada-ASSURED)
Source Lines of Code (ASLOC)
? Compareleve of correspondence between the CM S-2 source and translated Ada,
M cCabe Cyclomatic Complexity (METRC, Logiscope)
Halstead Metrics (METRC, Logiscope)
Source Lines of Code (METRC, ASLOC)
Translation Source Lines of Code Ratio
? Examine effort
Person-hours
Difficulty of Conversion Hours
Difficulty of Conversion Source Lines of Code

This appendix provides an explanation of these metrics in the following order:
? McCabe Cyclomatic Complexity

Halstead Metrics

Source Lines of Code

Software Productivity Consortium Ada Quality and Style Metrics

Person-hours

Difficulty of Conversion Hours

Difficulty of Conversion Source Lines of Code

Translation Source Lines of Code Ratio

NN N N N) N

D-1

MCCABE CYCLOMATIC COMPLEXITY

McCabe's cyclomatic complexity, V(G), is based on a graph theoretic interpretation of program
control flow and provides an indication of structural complexity. The graph of interest is the
decision-to-decision path or DD-Path graph (Jorgenson, 1995). A DD-Path graph depicts the paths
between decision pointsin a module or program. The formula for cyclomatic complexity
isV(G) = e- n+ 2p, where e isthe number of edges (arcs), nisthe number of nodes, and p isthe
number of connected regionsinthegraph * . V(G) is equal to the number of linearly independent
circuits, or “basis paths,” in a DD-Path graph. Figure D-1 contains a short program, “paths,” in which
V(G) = 4. Thefour basis paths depicted in the graph can be traced by visiting each of the listed nodes
in the stated order.

{1,2,3,4,1,5)
{1,2,3,1,5)
{1,2,1,5}
{1,5}

V(G) has important implications for effort required in path testing since all DD-Paths will be
tested if all the “basis paths” are covered. Since at least onetest case must be constructed for each
basis path to be tested, path testing effort will be proportional to V(G) and “testing level.” Two
examples of testing leve are C ;, or DD-path testing, and C 1k, where each program path containing
up to k repetitions of each loop is tested (Jorgenson, 1995). For the programin Figure D-1, C; testing
would require generation of a minimum or four test cases. Thetotal number of pathsin zero to five
iterations of the loop in program “paths’ is Sj=o_s (V(G)-1)! = 1074. It is also the number of test cases
that must be generated to meet a C ;K test requirement 2 for k=5.

1 (Jorgenson 1995y notes that there is some confusion about the formulafor V(G). The alternative formula substitutes 1p for the 2p term used here. However, that method adds an

edge from the terminal node to the start node, so, both versions yield the same resuilt.

2 The formula only applies to this graph and is not a general equation for computing the number of cases for a
particular test requirement.

D-2

with procl, proc2, proc3, proc4;
with Set_Val ues;
procedure Paths is

A, B, C Bool ean;

begi n
Set _Val ues(A, B, O;
while Aloop -- node 1
proci;
if B then -- node 2
proc2;
if Cthen -- node 3
proc3;
el se -- node 4
proc4;
end if;
proc5;
end if;
end | oop;
end Pat hs; -- node 5 L

Figure D-1. DD-Path graph for paths program

V(G) is not without problems. V(G) would still be 4 for program “ paths’ even if the loop
statement were replaced by an if statement. The number of possible paths for the if statement version
would be 4, but the number of possible paths for the loop statement version would be Si=o 5 (3)' for up
to j iterations of theloop. V(G) is rdated to, but not equal to the number of pathsin a program.

Another problem with cyclomatic complexity isthat it does not take data dependence into
consideration in the calculation of number of paths. If the following version of procedure
“Set_Values’ were used by program “paths,” all basis paths in the program would be feasible.

wi th Random
procedure Set_Val ues
(A : out Bool ean;
B : out Bool ean;
C: out Bool ean) is
K : Float := Random
begi n
A Bool ean'val (K > 0.0 and K < 100.0);
B Bool ean'val (K > -1.0 and K < 1.0);
C Bool ean' val (K = 0.5);

end Set Val ues;

D-3

However, if the following version of procedure “Set Values’ were used, basis paths { 1,2,3,4,1,5}
and{1,2,3,1,5} would be unreachable and would constitute sections of “dead code.” The graph
depicting reachable sections of codeis shown in Figure D-2.

wi th Random 1
procedure Set_Val ues

(A : out Bool ean;
B : out Bool ean;
C: out Bool ean) is
K : Float := Random
begi n

A := Boolean'val (K > 0.0);
B : = Bool ean'val (K = 0.0);
C : = Bool ean' val (K < 0.0);
end Set Val ues;

Empirical studies reveal that programs with
cyclomatic complexities less than 5 are generally
considered simple and easy to understand (Jones,
1991). A good rule of thumb for software @
development projects is that modules with cyclomatic
complexities greater than 10 should be reexamined
for possible ssimplification and that values greater
than 20 indicate that serious scrutiny of thesourceis ~ Figure D-2. DD-Path graph for paths
required. Modules with cyclomatic complexities program with unreachable code
greater than 50 are generally considered to be incomprehensible. However, these are only guiddines
and there are exceptions. For example, long case statements yielding large values of V(G) can be
simple to understand because of the inherent mutual exclusivity of the cases. However, a comparable
sequence of if statements may be harder to comprehend because successive if statements are not
inherently mutually exclusive. Mutual exclusivity for if statements is data dependent. Such data
dependencies may not be understandable through examination of the local structure. In these cases
cyclomatic complexity serves as a“red flag” for potential understandability problems.

Per-module V(G) may be misleading when used to assess total program complexity. Thisis
because there may be many small modules with low values of V(G). The sum of V(G) for all modules
inaprogramis not a good indication of V(G) since a program with 100 modules of V(G)=1 has much
simpler control-flow complexity than a program with a single module with V(G)=100. In addition,
average V(G) computed as V(G)avg= Sk=1..V(G)i/n is also slightly misleading. Programs with many
small modules of low cyclomatic complexity but with few large modules with rdatively high values
of V(G) will yield ardatively small valuefor V(G)avg, perhaps giving the impression that the program
isrelatively smple. Consider the example of a program containing 25 modules of one statement each
with V(G)=1, and one module with 250 statements with V(G)=25. For this program,

V(G)avg=(25* 1+1* 25)/26»2. This value is well within the normally acceptablerange. V(G)ayg
considered in isolation obscures the fact that the majority of the source code statements in this
program are located in an area of high cyclomatic complexity.

D-4

L ogiscope computes V(G)ayg. Average cyclomatic complexity weighted by lines of source codeis
amore meaningful indication of program V(G). For example, let Cy be source lines of code for
module k and C+ betotal source lines of codein a program. A weighted V(G) such as

V(G)wavg=Sk=1.2(V(G)* C)/(Cr* n) would give a better indication of the total complexity in the
program. In the example above

V(G)wavg = (25*(1*1)+1*(25*250))/275 = 6275/275 » 23.
This report uses the weighted average M cCabe metric rather than average.
The McCabe cyclomatic complexity metric addresses the following questions:
What istheleve of cyclomatic complexity of the CMS-2 source?
Can CM S-2 source code with high cyclomatic complexity be translated into Ada?

Istherea similar distribution of cyclomatic complexity between the CMS-2 input and the
generated Ada?

How different or similar are the cyclomatic complexities of the outputs of the various
trangators?

How understandable is the generated Ada on the basis of cyclomatic complexity?

D-5

HALSTEAD METRICS

Three of the Halstead metrics are of use in comparing the input and output of the CMS-2
trangators. They are program (or module) vocabulary size, program length, and volume (Halstead,
1977).

Vocabulary size, h (Greek eta), is total number of unique operators and operands in a program.
h;: the number of unique operators

h,: the number of unique operands

h=h;+h,

Program length, N, is the total number of occurrences of operators and operands.

Ni: thetotal usage, or count of all occurrences of operators

N.: thetotal usage, or count of all occurrences of operands

N =Nj;+ N

Program volume, V, can be thought of as the number of bits needed to represent a given program
in the main memory of a special-purpose computer designed to execute that program (Halstead &
Schneider, 1980). This s based on the observation that log 2h is the minimum number of bits required
to represent al of the individual € ements of a program.

V= N|Og2(h1+h2) = N|ngh

Halstead developed other equations to predict such things as programming effort and number of
errors. However, those aspects of the theory are not particularly rdevant to this evaluation. The
Halstead metrics used here describe the textual content and complexity of a program on a per-
subprogram basis. That is, comparisons based on these Hal stead metrics between trandlator input and
translator output, and between tranglator outputs give a high level description of the textual
similarities between the various versions of the same program.

SOURCE LINES OF CODE (SLOC)

SLOC has been used historically as a means to understand program size. It has been valuable for
estimating complexity, costs, productivity, and many other programming metrics. Therearea
number of problems with the “source lines of code’ (SLOC) metric. No standards exist for counting
SLOC in any programming language. That makes it difficult to compare programs writtenin
different programming languages on the basis of SLOC. In addition, the amount of code produced for
the same specification written in the same programming language can differ by a factor of five
between programmers due to individual programming style (Jones, 1991). It is not clear that a
smaller or larger program is preferable. A smaller program may be more terse and have more
statement complexity. A larger program may be more readable, or may be less efficient. The SLOC
metric does not distinguish degrees of complexity, efficiency or understandability.

The CMS-2 SLOC isacount of threethings: linesending in ‘$', comment lines, and total lines of
text. Thelinesreported as“LOC” inthe CMS-2 SLOC count were computed as the total number of
linesending in ‘$" minus the number of comment lines. Comment lines were counted as linesin

D-6

which the word “comment” occupied character positions 11 through 17. The UNIX “grep” and “vi”
programs were used to count CMS-2 SLOC.

The Ada line counter also counts three things: non-embedded semicolons, comments, and lines of
text. The number of non-embedded semicolons is the count of all semicolons except those occurring
in comments and character strings. Comment lines were counted as lines which contained two
successive hyphens not embedded in a character string. SLOC counting in CMS-2 sample was line-
oriented in that each line of text was interpreted to be either a comment, an executable statement, or a
blank line. Thiswas verified upon visual inspection of the Quick Look CMS-2 sample. Multiple
non-embedded semicolons may occur on the samelinein Ada. In addition, comments and terminal
semicolons may be located on the same line of text in an Ada program. It is possiblein Adato have
the sum of the number of comments and SLOC exceed the total number of lines of text in afile of
Adasourcecode. The Adaline counter, ASLOC, that was written and used to count SLOC for this
trandator evaluation is found in Appendix J.

SOFTWARE PRODUCTIVITY CONSORTIUM (SPC) METRICS

The SPC has developed a set of guiddines for Ada programmers to support the development of
high-quality, reliable, reusable, and portable software (Software Productivity Consortium, 1992).
Ada-ASSURED is an Ada source code processor that is alanguage-sensitive editor, programming
standards enforcer, and pretty-printer (GrammaT ech, 1995). In the default configuration, its
standards enforcement capability is strongly related to the SPC guidelines. It takes Ada source code
as input and generates a new listing, formatted according to SPC guiddines, and including in-line
diagnostics that map to SPC guiddines. There is a many-to-many relationship between the Ada-
ASSURED diagnostics and the SPC guiddines. This is dueto the fact that Ada-ASSURED operates
at the syntactic level and there is a many-to-many relationship between Ada syntax and SPC
guiddines.

The Quick Look Ada QA9 samples were processed with Ada-ASSURED. A number of
diagnostics relating to Ada-ASSURED violations were produced. In general, it probably is desirable
to change the offending sections of code associated with Ada-ASSURED violations so that they
comply with the SPC guidelines. However, this is not necessarily the case for translated code. In
general, the closer the trandlator output is to theinput, the easier it is to verify correct trandation.
There are two primary reasons for this. First, it is easier to understand the relationships between two
similarly structured programs. Second, there may also be test programs in the original language that
are candidates for trandlation. The closer the translated code is to the original code, the more likdly it
isthat the original test cases and procedures will be useful in testing the translated code. Oncethe
trandated codeis verified and tested, much can be gained by reengineering the code and applying the
SPC guidelines.

This section provides a discussion of the meaning of the Ada-ASSURED violations that were
encountered on the tranglator-produced Ada QA9 samples. (Thereader isreferred to Tables A-5
through A-8 for the number of occurences of these errors and for the exact statements that were

flagged.)

Ada-ASSURED violations are designated with “V” for violation and a number, n, which
identifies the violation. The violations produced for the Quick Look sample are discussed in the

D-7

following sections. Each violation is discussed in the context of SPC guidelines and implications for
testing and certification.

VO: “Theidentifier/keyword < id> is used in context < context>" (GrammaT ech, 1995).
Each occurrence of VO was due to the use of a“use clause’. The presence or absence of
“use clauses’ has no effect on source code structure. The SPC guideine from (SPC92 sec.
5.7.1) is

Minimize using the “use clause”’

Consider using the “use clause’ in the following situations:
1. Infix operators are needed

2. Standard packages are needed and no ambiguous references are introduced
3. Referencesto enumer ation literals are needed

Consider the renames clause to avoid the “ use clause’
Localize the effect of all “use clauses”.

In the absence of a“use clause’, qualified naming must be used to refer to all entities declared
outside the current scope. For example, if main procedure Z, a client of package X, invokes
procedure Y of package X, all referencesto Y in Z must appear as“X.Y." Inthe presence of a“use
clause’, referencesto Y in Z may appear simply as*Y.” Qualified naming makes the source of the
identifier (e.g., Y) obvious (e.g., X.Y impliesthat Y is declared in X). The presence of the “use
clause’ decreases program understanding because it obscures the origin of identifiers. Thisis why
many projects ban the “use clause” and may be why the SPC guidelines advise minimizing its use.

However, the " use clause’ can diminate a certain amount of clutter and unwiddiness in writing
and maintaining programs with server packages having long names. Thisis particularly true for
mathematically oriented programs. Ada provides programmers the capability to declare derived
versions of standard numeric types. Such declarations may be used to prevent errors such as adding a
variable for voltage to a variable for longitude. The operations on a derived type defined in a server
package, are not, by default, visible to clients of the package. In the absence of a “use clause” for the
server package, the required syntax for an infix operation for such atypeis the same as for a function
call. Thefollowing infix operators for floating point types are affected: <, <=, =, /=, >=, >, +, -, *, |,
and **.

Figure D-3 depicts the casein whichno “useclause’ is used. It is quite cluttered in comparison to
Figure D-4 which has a “use clause’. However, use of qualified naming in Figure D-4 makes the
origin of the declarations clear whereas the “use clause’ has introduced ambiguity with respect to the
origins of the variables in Figure D-4.

D-8

with First_Long_Package_ Nane;
wi th Second_Long_Package_Name
procedure A83_Nu_Nr is
begi n
First _Long_Package_ Nane. Sum
:= First_Long_Package_ Nane.” +”

First _Long_Package Nane. Gl, First_Long_Package_ Nane. @);
end A83 Nu_Nr;

Figure D-3. Procedure Accessing Global Variables without Renaming and without a “ Use
Clause”

with First_Long_Package_Nane;
use First_Long_Package_Nane;
wi th Second_Long_Package_Narme;
use Second_Long_Package_Nane;
procedure A83 U Nr is

begi n
Sum:= Gl + &;
end A83 U Nr;

Figure D-4. Procedure Accessing Global Variables with a “ Use Clause”

The SPC recommendation to use renaming, presumably to allow normal infix format of
expression, has been obviated by the introduction of the Ada 95 “use type clause’. Figure D-5 shows
an Ada 83 example of renaming the“+” operator. This gives the addition statement a more familiar
appearance and requires a rather lengthy renaming statement to achieve that effect. The addition
statement is till relatively cluttered due to the length of name of the server package. Figure D-6
shows an Ada 83 example of renaming the long server package namein addition to the “+” operator.
This resultsin a much simpler and unambiguous statement syntax through the addition of four words.

with First_Long_Package_Nane;
procedure A83 Nu_Ro is
function “+” (Left, Right : in First_Long Package Nane. Real)
return First_Long_Package_Name. Real
renanes First_Long_Package_Nane.” +";
begi n
First _Long_Package Nane. Sum : =

First _Long _Package Nane.GlL + First_Long_Package_Nane. &Q;
end A83 Nu_Ro;

Figure D-5. Procedure Accessing Global Variables with a Renamed Addition Operator and
without a “ Use Clause”

D-9

with First_Long_Package_Nane;

procedure A83 _Ro_Rc is
package Fl pn renanes First_Long_Package_Narme;
function “+" (Left, Right : in Fl pn. Real)

return Fl pn. Real renanes Fl pn.”+";

begi n
Fl pn. Sum := Flpn.GL + Fl pn. &;

end A83 Ro_Rc;

Figure D-6. Procedure Accessing Global Variables with a Renamed Server Package and
Addition Operator and without a “ Use Clause”

Figure D-7 illustrates use of the Ada 95 “use type clause” which provides direct visibility of a
type s operators. This has the same affect as renaming the “+” operator as depicted in Figure D-5.
Figure D-8 shows use of the “use type clause’ in conjunction with package renaming. Whileiit is not
as brief as Figure D-4 which uses the “use clause’ it is unambiguous. However, it is relatively brief
and uncluttered compared to the other alternatives.

with First_Long_Package_Nane;
procedure A95 U Nr is

use type First_Long_Package Nane. Real ;
begi n

First _Long_Package Nane. Sum : =

First _Long _Package Nane.GlL + First_Long_Package_Nane. GQ;
end A95 Ut Nr;

Figure D-7. Ada 95 Procedure Accessing Global Variables with a “ Use Type Clause” and no
Renaming

with First_Long_Package_Nane;

procedure A95 U Rc i s
package Fl pn renanes First_Long_Package_Narme;
use type Flpn. Real ;

begi n
Fl pn. Sum := Flpn. GL + Fl pn. &;

end A95 Rc;

Figure D-8. Ada 95 Procedure Accessing Global Variables with a “ Use Type Clause” and with
a Renamed Server Package

Use of the “use clause’ can decrease that part of the maintainer’ s cognitive load pertaining to
cluttered source code. This amount of the decreaseis related to the length of the names of the server
packages. On the other hand, the“use clause’ increases the part of the maintainer’ s cognitive load
pertaining to correct comprehension of the roles and relationships of the various packages comprising
a program. During maintenance, it is not sufficient to just correct, enhance, or add functionality. It
must be done without introducing unknown side effects to any other part of the program. Use of the
“use clause” makes this more difficult because it obscures the origins of identifiers.

D-10

V1. “ A ligt with this many items must be a named association list.“ (GrammaTech, 1995).
Thereis no differencein code structure resulting from use of either positional or named
association. Each occurrence of V1 was due to the use of an array aggregate. The SPC
guiddinesreferenced by V1 arerdated to named association. (Software Productivity
Consortium, 1992) and aggregates (Software Productivity Consortium, 1992). The SPC
guiddines for named association do not mention aggregates. However, one of the
guidelines for the aggregates states “Use positional association only when thereisa
conventional ordering of the arguments” (Software Productivity Consortium, 1992). There
is also reference to named association in the rationale section for aggregates which states:

Aggregates can also be areal convenience in combining data items into arecord or array structure
required for passing the information as a parameter. Named component association makes aggregates
more readable.

In this case, the Ada-ASSURED violation does not seem to indicate noncompliance with SPC
guiddlines. The aggregates in question are array aggregates with integer indexes. As such, the
applicable guiddine should probably be the one cited above applying to “conventional ordering of
arguments.”

V4: “Useof GOTO not allowed.” V5: “Labes are not allowed” (GrammaT ech, 1995).
Both of these violations reference (Software Productivity Consortium, 1992) “Do not use
goto statements.” Loop, if, and case statements are what must be used to replace
GOTO..<label> pairs. There are combinations of GOTO ...<label> pairs for which there
is no simple equivalent in goto-less programming. Eliminating GOTO statementsin
trandated code could increase required testing effort due to significant changes in code
structure.

V7: “Nested loops must all be named.” V8: “ Exit statements from named loops must be
named.” V10: “ All BLOCKS must be named.” V25: A loop this long must be named.”
Thereis no difference in code structure resulting from use or lack of use of loop, exit, or
block statement names. The applicable guiddines and portions of the rationales follow:

1. (Software Productivity Consortium, 1992): Associate names with loops when they are
nested.

When you associate a name with aloop, you must include that name with the
associated end for that loop (Department of Defense, 1983). This helps readers find
the associated end for any given loop ... The choice of a good name for the loop
documents its purpose.

2. (Software Productivity Consortium, 1992): Associate names with blocks when they
are nested.

When thereis a nested block structure, it can be difficult to determine which end
corresponds to which block. Naming blocks alleviates this confusion.

3. (Software Productivity Consortium, 1992): Useloop names on all exit statements
from nested loops.

D-11

An exit statement isan implicit goto. It should specify its source explicitly. When
thereis a nested loop structure and an exit statement is used, it can be difficult to
determine which loop is being exited. Also, future changes which may introduce a
nested loop are likdy to introduce an error, with the exit accidentally exiting from the
wrong loop. Naming loops and their exits alleviates this confusion.

V12: “Non-constant object declarations are not permitted in the visible part of a package
specification.” The applicable guiddineis “ Avoid declaring variables in package
specifications” (Software Productivity Consortium, 1992).

There can be a significant difference in source code structure between programs with and without
non-constant object declarations in package specifications. Moreover, it is unclear that any
significant benefit would be obtained by simply declaring access-subprograms for variables formerly
declared in a package specification. Compare Figure D-9 with Figure D-8 to seethe stylistic
difference.

with First_Long_Package_Nane;

procedure A95 U Rc is
package Fl pn renanes First_Long_Package_Narme;
use type Flpn. Real ;

begi n
Fl pn. Put _Sum(Fl pn. Get _GL + Fl pn. Get _R);

end A95 Rc;

Figure D-9. Ada 95 Procedure Using Access-Subprograms with a“ Use Type Clause” and with
a Renamed Server Package

The guiddine against declaring variables in package specifications is more meaningful in the
context of type and object managers. In those cases the operations on the type are carefully crafted so
that the objects can only be accessed in prescribed ways. Cohen (1996) has an example of a type
manager for “Length_Type’ such that the multiplication operation returns a value of type
“Area_Type, ” not “Length_Type.” In his example, a variable of type “Length_ Type’” cannot be the
result type of a multiplication operation with operands of type “Length_Type.” The constraints
imposed by this package design preclude certain types of programming errors. However, in the
context of translated code, conversion from the standard arithmetic approach to the type and object
manager approach constitutes a reengineering effort with potentially significant maintenance
consequences for therest of the program.

V17: * Subprogram body size of <n> exceeds maximum of <m>." Thereisno SPC
reference for this violation. However, areview by Banker (1993) of several studiesthe
optimum values of SLOC/module indicate that it is below the DoD’ s proposed standard of
200 SLOC/module. Neverthdess, placing an upper limit on module (subprogram) size for
tranglator output could result in programs that were structurally dissimilar to the original
CMS-2 programs.

PERSON-HOURS

Person-hours metrics were kept to assist others who are considering translating project code.
This information may be useful in estimating the time and dollars required to perform trandations.
Detailed person-hours were kept for the steps of the three phases of the translator evaluation process,

D-12

the steps of the preliminary work, aswell asfor general tasks. General tasks included metrics
collection, preparing and giving presentations, and writing the reports.

DIFFICULTY OF CONVERSION HOURS (DOCH)
This metric is calculated as
DOCH = HCC + HEC

Where HCC is hours spent modifying translated code until compiles correctly and HEC
is hours spent reengineering Ada code until executes correctly.

This metric was included for comparing the reengineering effort needed to move the translated
code to correct execution. It was intended primarily for comparing translators, but could also be used
for comparisons across compilers.

DIFFICULTY OF CONVERSION SLOC (DOCS)
This metric is calculated as

DOCS= SCC + SEC

Where SCC is SLOC added or modified until translated Ada code compiles correctly and
SEC is SLOC added or modified to reengineer Ada code until executes correctly.

Thismetric is very similar to DOCH. It was collected for the same purpose. This metric was kept
because of potential bias problems with DOCH. Wefélt that the software engineer would be
learning as he/she takes the trandated Ada code produced by the three trandlators through the
Reengineer Until Ada Code Executes Correctly phase. The second set of translated Ada may be
completed faster than the first and the third faster than the second because of the learning experience.
Webelieve that DOCS is less biased.

TRANSLATION SOURCE LINES OF CODE RATIO
This metric is calculated as
Translation SLOC ratio= AdaSLOC : CMS-2 SLOC

It is used for comparing the size of the translator-produced Ada source with the corresponding CM S-
2 code.

D-13

APPENDIX E: POTENTIAL FOLLOW-ON WORK

This appendix describes several tranglator evaluation tasks that could be doneif additional time
and funding were available.

IMPROVE QUALITY OF TRANSLATED ADA SOURCE

This task would address methodologies, tools, and effort to convert correctly executing Ada code
to high quality, maintainable, Ada code. A key research activity could be to identify specific
reengineering tool requirements that would facilitate the use of translated Ada code. The current
research project has already identified some reengineering capabilities needed. Tool vendors may be
responsive to incorporating these requirements into their products once they are identified. Initial
requirements to support translation not normally satisfied by Ada reengineering tools include:

Remove GOTO statements

Remove dead code

Convert global objects to local objects

Eliminate subprogram call side effects to global variables

Move type definitions and subprogram declarations to package bodies where appropriate
for information hiding

Create meaningful types and object names

? Reposition code into packages

NN N N T

)

This task could begin at the completion of thethird phase, Reengineer Until Ada Code Executes
Correctly. The quality of the translated Ada source code would be improved by using tools and by
making manual changes. Ada source code produced by translators mirrors the CM S-2 code and
does not take advantage of Ada typing, packaging, exception handling, and useful software
engineering capabilities offered by Ada and Ada 95. The source code produced needs to be brought
into conformance with the* Ada Quality and Style Guiddines for Professional Programmers,”
(Software Productivity Consortium, 1992).

Tools that would assist in the quality improvement of the Ada source code need to be identified,
obtained, and installed. Some of these tools identify problems and others can automatically fix
them. Some of these tools were already used during the evaluation to assess quality (TableL-1).

Other potentially useful tools to be considered for this task are described in TableL-2. Others
need to be identified.

This source code quality improvement task includes the steps listed below. Thistask could start
with an Ada version of QA9 or another translated sample.

? Examinethe quality of translated and correctly executing Ada/Ada 95 sample using tools
Candidate tools include: Ada-ASSURED, AdaMat, and Logiscope. Much of this has
already been done under the translator evaluation.

? Experiment with existing Ada quality improvement tools

Toolsinclude: Rational’s Reengineering Toolkit, Xinotech’s Composer and
Xinotech's prototype Object Extractor, and Ada-ASSURED. Feedback would be
provided to tool developers for improvements.

Make manual code improvement changes that existing tools cannot handle
We expect that these changes would include removal of GOTO statements, imination
of dead code, pushing scoping to appropriate leve, partitioning code into packages,
replace trandated identifiers that are usually related to the eight character CMS-2
names, by more meaningful identifiers, and others. A product of this step would be
specific recommendations to tool developers for new automated capabilities for Ada
source code quality improvement.

Experiment with new Ada documentation tools
These tools include CCCC'’ s Hyperbook and I-DOC, a prototype tool developed by the
University of Southern Californiawith DARPA funding. Feedback would also be
provided to developers for tool improvement.

Reexamine quality of Ada code using tools
The quality of the enhanced Ada/Ada 95 code would be re-measured using tools and
compared with trandated code from the initial step.

EXAMINE PERFORMANCE OF EXECUTING ADA COMPONENTS

This task would compare the performance of three translations and one redesign/rewrite of a
portion of an existing CMS-2 system. Thetranslations are correctly executing Ada 95 programs
produced by the APL, CCCC, and TRADA trandators and the fourth is a manual redesign/rewritein
Ada 95 of the CMS-2 components. Comparisons of executable size, memory usage, and run-time
performance would be made. Executable size comparisons can be easily done while memory and
timing measurements are considerably more difficult. A manageable size operational CMS-2
project would be selected for the performance comparison. QA tests would not beused. MK-2isa
candidate sample.

EVALUATE OTHER TRANSLATOR CAPABILITIES
? Test the overlay capability of the CCCC tranglator using MTASS QA3 and QAG0. Both

are sdlf checking tests that use a test controller.

APPENDIX F: RECORD FOR REENGINEER UNTIL ADA CODE
EXECUTES CORRECTLY

This appendix is intended to assist software engineers who plan to use the trandators. It isalog
containing the details of the steps followed to achieve correct execution in Ada. QA9 was taken to
valid execution following translation by the TRADA, CCCC, and APL translators. Logs are
provided for the following combinations of translators and compilers:

QA9 TRADA VAX Ada
QA9 TRADA Sun Ada
QA9 TRADA GNAT

QA9 CCCC GNAT
QA9 CCCC Sun Ada
QA9 APL GNAT
QA9 APL Sun Ada

The exact compilation and execution errors and fixes are included.

TRADA - REENGINEERING RECORD FOR VAX ADA
1. Mademinor corrections to test harness adding additional 1/O capabilities.

TRADA - REENGINEERING RECORD SUNADA COMPILER

1. A monalithic file was created from separate TRADA files/packages for handling convenience.
This big file was broken down into small files. A TRADA summary file provided the
compilation order.

This split the monalithic file into the following files with onefile per compilation unit.

CMS 2 typesa
Qa%e.a

Qa9d.a

Qa9c.a

Qa%b.a

Qa%a.a

Start.a

Dryver.a

F-1

Agtcon.a
Major_header.a

CMS 2 types b.a
Undefined_extrefs.a
Qsysddla.a
Qa9qlook _b.a
Agtcon_b.a
Dryver_b.a
Undefined_extrefs b.a
Qa%a b.a
Qadb_b.a

Qad9c b.a

Qa9d b.a

Qa% b.a

Start_b.a

Generate compilation script:
argdb -p -If files
asg compilefiles -luada\-v \-'E u
2. Compilation

source compile

/homel/users/ollerton/cms2adaltradada/vads qa9/CM S _2_types.a, line 160, char
40:error: RM 3.5.7(12): cannot select predefined type: range too big
/homel/users/ollerton/cms2adaltradada/vads qa9/CM S _2_types.a, line 162, char
15:error: RM 3.5.7(12): cannot sdect predefined type: digits too big

Requested range of floating point type exceeded platform limitations. Make the following change
to remedy the problem.

F-2

++++++++++++H AR
-- + Bob dlerton, June 21, 1996
Sun Ada 1.1(j)

RM 3.5.7(12): cannot sel ect predefined type: range too big.
NOTE: 8#0.77777777# is the closest octal rep of n <= 1.0.
There are two floating point representations for SunAda. One
has 6 digits, and a maxi mum bi nary exponent (SAFE_EMAX) of 125,
and the other has 15 digits with SAFE EMAX = 1021. So, both of
t hese decl arations shoul d have exponents of SAFE_EMAX
B 5 ok ot o S R o R o R o o S R R o o T R o R o o S R o T SRl S Sl o S R S S o o
-- + TYPE Fl oat _s
-- +1SDATS 7
-- + RANGE -8#0.77777777# * 2.0 ** 1023 .. 8#0.77777777# * 2.0 ** 1023;
-- +TYPE Fl oat _d
-- +1SDATS 16
-- + RANGE -8#0. 7777777777777777776#
.-+ * 2.0 ** 1023 .. 8#O0.7777777777777777776#
-- + * 2.0 ** 1023;
TYPE Fl oat _ss

IS DATS 7;
TYPE Float _Sis DIGA TS 7 RANGE

-8#0. 77777777# * 2.0 ** Float_ss' Saf e_Emax
8#0. 77777777# * 2.0 ** Fl oat_ss' Saf e_Emax;

TYPE Fl oat _d

IS DDA TS System Max_Digits;
B 5 ok ot o S R o R o R o o S R R o o T R o R o o S R o T SRl S Sl o S R S S o o

:
+ 4+ + 4+ ++ o+

Recompilation, link

source compile
No compilation or link errors

Execute Qadlook.
SUMMARY OF ERRORS

EXECUTED - 345

NO TESTSACCOUNTED- O

EXECUTION ERRORS - 82
Execution errors all appear to be due to explicit conversion of afixed or floating point exponent
to aninteger. Only integer exponents are available within the Ada 83 standard math operations.

Access to other types of exponentiation operators will require access to a math library offering
those capabilities. The following code fragment is typical of part of an exponentiation test.

- -+
-- Exponent converted to Ada integer
-- QA9 0151 SET VAWS9 TO VAWS6**VFDL $

(sysddla. Vaws9 : =
T 32_s 9 (Float_43 (xysddla. Vaws6) ** |nteger
(@sysddla. vidl));

F-3

Explicit type conversion is used extensively in the 82 exponentiation tests. In this particular case,
function T_32_s 9returnsavalue of typeCms 2 Types. A_32 s 9, whichisafixed point type.
Qsysddla.Vaws6 and Qsysddla.Vfdl are also of type Cms 2 Types.A_32 s 9. However,
Qsysddla.Vawsb is explicitly converted to type Cms_2_Types.Float_43 and Qsysddla.Vfdl is being
converted to type Integer. The conversion of the exponent to integer has the dramatic effect on
precision that could account for the 82 errors.

Thereis a straightforward and tedious approach to remedying this problem. First, we assume that
all of the problems are due to insufficient precision resulting from conversion to an integer exponent
and that the problem will be remedied by changing all such instances to conversion to a floating point
exponent. Thiswill necessitate other conversions as well. However, examination of package
CMS_2 Typesrevedalsthat all six floating point types now have the same precision and underlying
representation as the predefined type Float. That being the case, we can use the SunAda Math."**”
function and explicitly convert the operands to and from the standard type Float. The code fragment
shown above could then become:

ik i o T
- Exponent converted to Ada integer
- Changed by Bob dlerton: 6/21/96
(sysddla. Vaws9 : =

T 32_s 9 (Float_43(Fl oat (ysddla. Vaws6) ** Fl oat
(@sysddla. vfdl)));

This technique must be applied in all cases except for the case in which the test is designed to test
x**n, wheren is of type integer.

6. Recompilation, link

source compile
No compilation or link errors

7. Execute Qad9look.
SUMMARY OF ERRORS

EXECUTED - 345
NO TESTSACCOUNTED- O

EXECUTION ERRORS - 0

F-4

TRADA - REENGINEERING RECORD FOR GNAT COMPILER

1. Take SunAda source as a starting point.

Produce package Math as an instantiation of Ada.Numerics.Generic_Elementary Functions.

wi th Ada. Nureri cs. Generi c_El ementary_Functi ons;
package Math is new
Ada. Nuneri cs. Generi c_El ementary_Functi ons(Fl oat);

2. Split into files and generate compilation order

gnatchop -s SRC

3. Compilation, link and bind

sh SRC.sh -gnato
gnatmake ga9glook

No errors

4. Execute ga9look.
SUMMARY OF ERRORS

EXECUTED - 345
NO TESTSACCOUNTED- O

EXECUTION ERRORS - 0

F-5

CCCC - REENGINEERING LOG FOR GNAT COMPILER

1. Concatenate
cat PREDEFIN.ADA QA9QL.ADA >> SRC

2. Split into files and generate compilation order

gnatchop -s SRC

3. Compilation
sh SRC.sh -gnato

The"-gnato" qualifier enables range and eaboration checks.

cms2_to_ada predefined.adb:6:06: file "math_lib.ads" not found

compilation abandoned

math_lib_cms2.ads:2:06: file "math_lib.ads" not found

compilation abandoned

ga9qlook.adb:6:08: file "math_lib.ads" not found

ga9qglook.adb:6:08: "QA9QLOOK (body)" depends on "MATH_LIB_CMS2 (spec)"
ga9qlook.adh:6:08: "MATH_LIB_CMS2 (spec)" depends on "MATH_LIB (spec)”
compilation abandoned

This identified a dependency on math_lib.ads which was not part of the distribution.
Thisis a generic math library with a generic formal parameter named "real.”

with math_lib;
package math_lib_cms2 is new math_lib(real=>float);

Fix: Substitute Ada.Numerics.Generic_Elementary _Functionsin Ada 95 ARM A.5.1

for math_lib.

--with math_Ilib;
--package math_lib_cns2 is new math_lib(real =>fl oat);
wi th Ada. Nureri cs. Generi c_El ementary_Functi ons;
package math_lib_cns2 is new

Ada. Nuneri cs. Generi c_El ementary_Functi ons(Fl oat);

F-6

>

Recompilation

No remaining compilation errors, the following warnings were issued:

ga9qlook.adh:694:09: warning: "LX2" is never assigned a value
ga9qglook.adb:695:09: warning: "LX3" is never assigned a value
ga9qglook.adb:833:09: warning: "LX1" is never assigned a value

5. Construct driver program "ga9" to call Qa9qlook.Dryver.Driver.

procedure Q9 is
begi n

Qa9ql ook. Dryver. Dri ver;
end Qa9;

6. Compile, link, bind. No Errors.

7. Run ga9. Execution output

raised PROGRAM_ERROR
8. Dueto previous experience, assume that the exception was due to

"access before daboration." !

There are two functions in package QA9QL.QSY SDD1A that are called before

their bodies are daborated:

FUNCTI ON TV10H_ i tem address_access_init RETURN TV10H item pointer;
TV10H data : TVIOH item pointer:=TV10H item address_access_init ;
FUNCTI ON TV16D item address_access_init RETURN TV16D item pointer;
TV16D data : TV16D item pointer:=TV16D item address_access_init

! The QA9 test suite for the AN/UYK-7 was input the CCCC translator by mistake. It was during that reengineering
effort that the source of the program_error exception was identified. It was pinpointed by compiling the sample with
the Alsys compiler and running it in the Alsys debugger. This became quite time-consuming since the required math
library, which is normally part of the Alsys distribution, was either missing or was not properly installed. Since the
Alsys compiler was no longer under maintenance, we were unable to get technical support to assist usin accessing
thelibrary. The problem was overcome by using the Ada math library provided on the Walnut Creek CD-ROM. It
enabled us to pinpoint the source of the program_error exception, but other run-time errors resulted. Eventually, we
discovered that some of functions in the math libraries from the Walnut Creek CD-ROM were yidding incorrect
results. Use of those libraries was discontinued. Since we neither looked for nor read any documentation on the
Walnut Creek CD-ROM math libraries, we are not in a position to state that they are faulty. We may not have used
them in the intended manner and can only state that they sometimes yielded incorrect results in the manner in which
we used them.

F-7

One approach to fixing this problemisto initialize TV10H_data and
TV16D_data in the initialization code of the body.
Thefollowing changes were made to the specification of QA9QL.QSY SDD1A:

-- **xx% x%kxx%x Changed by Bob A lerton 8/4/96 ***** *xxkx*

FUNCTI ON TV10H item address_access_init

RETURN TV10H_ item poi nter

TV10H data : TVIOH item pointer; --:=TV10OH item address_access_init

i:UNCTI ON TV16D item address_access_init
RETURN TV16D item poi nter
TV16D data : TV16D item pointer; --:=TV16D item address_access_init

kkkhkk kkhkkhk Khhkkhkk *Fhkk*k khkkhkkhk *khkkhkk kkhkkkhk khkkhkk Fhkkkx

The following was added to the body of QA9QL.QSY SDD1A:

-- *xxxkkxks Added by Bob O lerton 8/4/96 ****xx*x*
begi n

TVIOH : = TVIOH i tem address_access _init;

TV16D : = TV16D item address_access init;

khkkhkkhkkkhkkhk *xkkkkhk*k

END QSYSDDIA ;

9. Recompilation

No remaining compilation errors, the following warnings were issued:
ga9qlook.adh:694:09: warning: "LX2" is never assigned a value
ga9qglook.adb:695:09: warning: "LX3" is never assigned a value
ga9qglook.adb:833:09: warning: "LX1" is never assigned a value

10. Run gao.

Results => no visible behavior.

Modify the program to output an indication of which parts of the program execute.

a) Write and Compile procedure Write.

use Ada. Text | o;
procedure Wite

(Msg : in String) is
begi n

Put _Line("=>>" & MsQ);
end Wite;

F-8

b) Insert callsto Write at strategic places in Qa9qlook.Dryver.Driver;

************************Added by Bob olerton EE IR R S S I Sk S
with Wite;

S R S S S Sk S S S R Added by Bob Glerton

R I S S o S S S S

W TH cns2_t o_ada_predefi ned ;

USE cns2_t o_ada_predefined ;

W TH UNCHECKED_CONVERSI ON ;

W TH SYSTEM ;

PACKAGE BODY DRYVER | S
PROCEDURE DRI VER | S

BEG N
Wite("calling Start");
START ;
Wite("calling QA9AA");
QR9A ;
Wite("calling QA9AB");
QA9B ;
Wite("calling QA9AC');
QA9C ;
Wite("calling QA9AD");
QA9D ;
Wite("calling QA9AE");
QA9E ;
Wite("calling QISYNOPS");
QISYNOPS ;

Wite("calling CVM52_EXEC');
CMS2_EXEC (8) ;
Wite("done!");
END DRI VER ;
END DRYVER ;

F-9

c) Insert callstoWritein function TV10H_item address access init and
TV16D_item address access init

BEG N
Wite(“calling TV1IOH item address_access_init”);

Wite(“returning from TV10H item address_access_init”);
END
BEG N

Wite(“calling TV16D item address_access_init”);

Wite(“returning from TV16D item address_access_init”);
END

12. Compile ga9qlook.adb. Success.
13. Bind and Link ga9
14. Execute ga9.

Resultsareas desired. Output indicates that all routines were called.

=>> cal ling TV10H item address_access_init

=>> returning from TV10OH item address_access_init
=>> cal ling TV16D_ item address_access_init

=>> returning from TV16D_ item address_access_init
=>> calling Start

=>> cal | i ng QA9AA

=>> cal |l i ng QA9AB

=>> cal li ng QA9AC

=>> cal | i ng QA9AD

=>> cal | i ng QA9AE

=>> cal | i ng QTSYNOPS

=>> cal | i ng CVM52_EXEC

=>> done!

F-10

CCCC - REENGINEERING RECORD FOR THE SUNADA COMPILER
Codereengineered for GNAT wasused asa starting point

1. Thereisno standard math library for Ada 83, so attempted to use package Math from Verdixlib.
Assume that the only operation required from the Math library is exponentiation with floating
point exponent. Develop and compile the following package.

with mat h;
package math_lib_cns2 is
function "**"(left, right: Float)
return Float renames Math."**";
end math_lib_cns2;

2. Concatenate the following packages together into onefile called SRC:

cms2_to_ada predefined.adb
cms2_to_ada predefined.ads
math_lib_cms2.ads

ga9.adb

ga9qglook.adb

ga9qglook.ads

write.adb

cat *.ad* > SRC

3. Split thefiles apart using the Ada PRImitive Compilation Tool (Apricot) and

generate a compilation script.

apricot SRC db -s
argdb -p -If files
asg compilefiles-luada\-v \-IE u

4. Execute the compilation script.

source compile

F-11

5. Compilation errors.

Package cms2_to_ada predefined.ads contains a reference to type "long_float" on line
342. Thisis not a predefined typein Ada 83. Ada 95 provides compiler implementors
the option of including the definition of long_float in package standard as a
predefined type (ARM 95 3.5.7.16-17).

function long_flt_image(r: inlong_float) return string;

6. Fix: Precedethe declaration of long_flt_imagein package cms2_to _ada predefined with the
following subtype declaration:

subtype long_float is float;

7. Compilation erors.
kkhkkhkkkkkkkkkhkkkhkkkkkkkk CmSZ to ada_prajdlnm ba

kkkkkkkhkhkkhkkhkkhkhkhkkhkkkk

459: fidd_h proc x(float_to_bit(value),bstart,blength,dest_word);
A N
A:warning: RM 13.10.2(2): operand is bigger than target

479: return bit_to float(fidd_h_fcn_x(source word,bstart,blength));

A:warning: RM 13.10.2(2): operand is smaller than target
525: meu_table word proc_x(float_to_cms2word(value),
A N
A:warning: RM 13.10.2(2): operand is bigger than target
536: meu_table word _proc_x(

N

Acinternal: assertion error at fileil_code.c, line 181

/homel/userg/ollerton/cms2adal/ccecc/large/cms2_to_ada predefined b.a,
line 459, char 22:warning: RM 13.10.2(2): operand is bigger than target

/homel/usersg/ollerton/cms2ada/cccc/large/cms2_to_ada predefined b.a,
line 479, char 14:warning: RM 13.10.2(2): operand is smaller than target

/homel/usersg/ollerton/cms2ada/cccc/large/cms2_to_ada predefined b.a,
line 525, char 29:warning: RM 13.10.2(2): operand is bigger than target

/homel/usersg/ollerton/cms2ada/cccc/large/cms2_to_ada predefined b.a,
line 536, char 7:internal: assertion error at fileil_code.c, line 181

F-12

8. Thecompilation error on line 536 is not a compilation error as such. It is a message stating that
the compiler has crashed. The rdevant code fragment is properly constructed:

procedure meu_t abl e_word_proc(val ue: in string
size_diml: in integer;
size_dinR2: in integer;

array_addr: in address) is

function bit32 to _cms2word i s new unchecked _conversi on
(source=>bit_string_32, target=>cnms2_word);

begi n

--536

meu_t abl e_wor d_proc_x(
bit32_to_cms2word(string4_to_bit32(pad(value,4))),
size_diml, size_dinR, array_addr);

end neu_t abl e_word_proc;

Past experience has shown that Verdix compilers are sensitive to complex
expressions. We will attempt to simplify the expression.

procedure meu_t abl e_word_proc(val ue: in string
size_diml: in integer;
size_dinR: in integer;

array_addr: in address) is

function bit32 to cms2word i s new unchecked _conversion
(source=>bit_string_32, target=>cnms2_word);
Target : cns2_word;

Str4 : constant String4 := Pad(val ue, 4);
Bs32 : constant bit_string_32 := string4 to_bit32(Str4);
begi n
Target := bit32_to_cns2wor d(Bs32);

meu_t abl e_word_proc_x(Target, size dinl, size_dinR, array_addr);
end neu_t abl e_word_proc;

9. Compiler errors: None. Compiler warnings:
kkhkkhkkkkkkkkkhkkkhkkkkkhkkkk*k CmSZ_tO_ada_pradenGj_ba

kkkhkkkkhkhkkhkkhkkhkhkhkkhkkk*k

459: fidd_h proc x(float_to_bit(value),bstart,blength,dest_word);
A N
A:warning: RM 13.10.2(2): operand is bigger than target

479: return bit_to float(fidd_h_fcn_x(source word,bstart,blength));

A:warning: RM 13.10.2(2): operand is smaller than target

525: meu_table word proc_x(float_to_cms2word(value),
A N
A:warning: RM 13.10.2(2): operand is bigger than target

10. Link and bind. No errors.

F-13

11. Execute ga9. Success.

=>> calling TV10H_item address _access init

=>> returning from TV10H_item_address access init
=>> calling TV16D_item address access init

=>> returning from TV16D_item address access init
=>> calling Start

=>> calling QA9AA

=>> calling QA9AB

=>> calling QA9AC

=>> calling QA9AD

=>> calling QA9AE

=>> calling QTSYNOPS

=>> calling CMS2_EXEC

=>> done!

F-14

APL - REENGINEERING RECORD FOR GNAT COMPILER

1. Compilation

gnatchop -s COMP
sh COMP.sh -gnato

A list of compilation errors is shown in Appendix A

2. Reenginesring
A list of compilation error fixes is shown in Appendix A.

3. Execute Qa9qlook
SUMMARY OF ERRORS

EXECUTED - 345
NO TESTSACCOUNTED- O

EXECUTION ERRORS - 82

4. Execution errors all appear to be dueto explicit conversion of a fixed or floating point
exponent to an integer. Only integer exponents are available within the Ada 83 standard
math operations. Access to other types of exponentiation operators will require access to
amath library offering those capabilities. Instantiating the package
Ada.Numerics.Generic_Elementary _Functions in Ada 95 which has the capabilities to

handle floating point exponents solved the problem.

wi th Ada. Nureri cs. Generi c_El ementary_Functi ons;
package ft is new Ada. Numerics. Generi c_El enentary_Functi ons(Fl oat);

5. Compilation, link and bind

sh COMP.sh -gnato
gnatmake ga9glook

F-15

6. Execute Qa9qlook
SUMMARY OF ERRORS

EXECUTED - 345
NO TESTSACCOUNTED- O

EXECUTION ERRORS - 0

APL - REENGINEER RECORD FOR SUN ADA COMPILER

The GNAT compiled APL source code was taken as the starting point.

. Thereis no standard math library for Ada 83, so attempt to use package Math from Verdixlib.
Assume that the only operation required from the Math library is exponentiation with floating
point exponent. Add the following line to the body.

with math;
use math;

Comment out the following lines from the GNAT code.

--with ada. nunerics. generic_el ementary_functions;

--package ft is new

ada. nuneri cs. generic_el ementary_functions(float);
- use ft

Compile the spec and body of basic_defns and ga9qlook.
Compile and link the driver.
Execute Qa9glook

SUMMARY OF ERRORS

EXECUTED - 345
NO TESTSACCOUNTED- O

EXECUTION ERRORS - 0

F-16

APPENDIX G: PERSON-HOURS

This appendix contains person hours spent doing

?

N N) N

Preiminary tasks
Quick Look tasks
Stress Testing tasks
Reengineering tasks
Other tasks

Table G-1. Hours Performing Preliminary Tasks - 1

TASK HOURS COMMENTS

1. Prepare / maintain plan 388

2. ldentify NRaD computers

a. SPARC 10/ 0S 4.1.3 1
b. VAX 11/785 VMS 5.5-1 2 Reload accounts and set up access
c. PC MSDOS 6.22 0

3. Identify, collect, install, and
learn CMS-2 source code
analysis tools (VAX & PC)

a. METRICS generator 1 Revision 6.2

b. DESIGN analyzer 1 Revision 6.1

G-1

Table G-1. Hours Performing Preliminary Tasks - 2

TASK HOURS COMMENTS
4. Identify collect, and install
CMS-2 source files to be
translated
a. MTASS QA files 9
b. ELF project 7
c. MK-2 project 7
d. S3-TMP project 11
e. SPY project 7
f. H60B project 33!
5. Identify, collect, install, and
learn Ada metrics tools
a. SLOC counter 6 Includes writing Ada line counter.
b. Logiscope 0 Already installed and learned
c. Ada-ASSURED 0 Already installed and learned
6. Install, obtain, and learn Ada
compilers
a. GNAT version 3.05 10
b. VAX version 2.2-38 1 reestablish compiler is up and available
c. Sunversion 1.1 0

! There were problems reading H60B tapes and with ftp transfers of HE0B files.

G-2

Table G-1. Hours Performing Preliminary Tasks - 3

TASK HOURS COMMENTS

7. APL translator

a. Obtain and install 4

b. Learn/ receive training 14 Developer says all constructs translate
8. CCCC transformer

a. Obtain and install 16

b. Learn/ receive training 39 Listed in user guide section 7
9. TRADA translator

a. Obtain and install 7

b. Learn/ receive training 2 Listed in user manual section 3.8

G-3

Table G-1. Hours Performing Preliminary Tasks - 4

TASK HOURS COMMENTS

10. Assembler Design Extractor
(low to high level)

a. Obtain and install 2
b. Learn/ receive training 2
11. Determine metrics to be 34
collected during evaluation
process
TOTAL 607 Hours for preliminary tasks

G4

Table G-2. Hours Performing Quick Look Inspection Tasks - 1

TASK HOURS COMMENTS
1. Compile, Link, and Execute Large AN/UYK-43 automated & self-
selected CMS-2 sample. checking arithmetic test, 430QA9, selected.
a. Adapt QA9 to INCLUDE 14 SYS-DD previously used as a compool, an
) the test controller, QTCON, added at link
SYS_DD and TC directly time.
b. MTASS compile, link, S>7 Reestablish QA testing COMmand files and
and execute logicals.
c. Analyze execution results 4 Execytes in SIM£}3 - 346 te.sts, 20 expected
errors in exponentiation section QA9A.
2. Gather CMS-2 source code
metrics.
a. Get SLOC, keywords & 2 Used CMS-2 source code METRICS
complexity metrics generator.
3. Translate to Ada
a. APL translator <1
b. CCCC transformer 4 SPYLOOP was used for CCCC and
TRADA as a small sample before translating
c. TRADA translator 2 the much bigger QA9
4. Run Ada metrics generator
for SLOC.
a. APL translator 1 SLOCs may be seen in Figure A-1
b. CCCC transformer 1
c. TRADA translator 1

G5

Table G-2. Hours Performing Quick Look Inspection Tasks - 2

TASK

HOURS

COMMENTS

5. Compile Ada samples
produced by translators.

a. APL compile by GNAT

b.
C.
d.

e.

APL by Sun Ada
CCCC by GNAT Ada
CCCC by VAX Ada
TRADA by GNAT

f. TRADA by VAX

These hours include times to prepare
command files and compilation time

6. Modify/ reengineer Ada as
needed to achieve successful
compile.

a. APL compile by GNAT

b.
. CCCC by GNAT Ada
. CCCC by SUNAda

. CCCC by VAX

. TRADA by GNAT

C

d

APL by Sun Ada

. TRADA by Sun Ada
. TRADA by VAX

N B O M PP O ©

CCCC transformer corrected to achieve
clean Ada

G-6

Table G-2. Hours Performing Quick Look Inspection Tasks - 3

TASK HOURS COMMENTS

7. Examine successfully
compiled Ada code using
Logiscope and Ada line counter.

a. APL compile by GNAT 13 The Logiscope statistics (Halstead and
McCabe) are only reported when using

b. APL by Sun Ada <1 GNAT. These statistics are virtually identical
c. CCCC by GNAT Ada 13 for all three compilers.

d. CCCC by Sun Ada <1

e. CCCC by VAX Ada <1

f. TRADA by GNAT 13

g. TRADA by Sun Ada <1

h. TRADA by VAX <1

TOTAL 150 Hours for Quick Look tasks

G-7

Table G-3. Hours Performing Stress Testing Tasks - 1

TASK HOURS COMMENTS
1. Prepare CMS-2 test cases 8 All 84 QA files modified to use INCLUDE
directive to include Test Controller (QTCON
& SYSDD)

2. APL Translator

a. Build COMmand file 6
b. Translate files 5
c. Gather metrics for 8

translator failures

d. Compile gener. Ada VAX 12

Sun 5
GNAT 4
Subtotal 40
3. CCCC Transformer
a. Build COMmand file 30 CCCC_STRESS.COM series
b. Translate files 134
c. Gather metrics for 24 supporting data for CCCC corrections

translator failures

d. Compile gener. Ada VAX 16

Sun 7
GNAT 6
Subtotal 217

G-8

Table G-3. Hours Performing Stress Testing Tasks - 2

TASK HOURS COMMENTS

4. TRADA Translator

a. Build COMmand file 35 TRADA_STRESS.COM series, and shell
i scripts

b. Translate files 69

c. Gather metrics for 16

i supporting data for TRADA corrections
translator failures

d. Compile gener. Ada VAX 24

Sun 5
GNAT 4
Subtotal 153
TOTAL 410 Hours for translator stress testing

G-9

Table G-4. Hours Performing Reengineering Tasks - 1

TASK

HOURS

COMMENTS

1. Compile, link, and execute
CMS-2 sample (QA9).

Mostly done during Quick Look phase with
QA9 arithmetic self-checking tests for
AN/UYK-43.

2. CMS-2 reengineering to get
valid execution.

See Quick Look task 1

3. Translate CMS-2 sample.
a. APL
b. CCCC
c. TRADA

Consolidate all single package files into 1
big file for easy compiling and transfers
among host computers.

4. Reengineer Ada to get clean
compile.

a. APL by Sun Ada

b. APL by GNAT

c. CCCC by GNAT

d. CCCC by Sun Ada
e. TRADA by GNAT

. TRADA by Sun Ada
. TRADA by VAX Ada

(Q—h

N b O kB kB © O

G-10

Table G-4. Hours Performing Reengineering Tasks - 2

TASK HOURS COMMENTS

5. Redesign/rewrite QA9 in 30
Ada 95

6. Provide compileable Ada

harness.
a. for APL 2
b. for CCCC 0
c. for TRADA 4 Ada Text_lO, Integer_lO, etc used in
harness.
6. Reengineer Ada to get valid
execution.
a. APL by Sun Ada 1 Number in parenthesis is the time required
to fully implement exponentiation with a
b. APL by GNAT 18 floating point exponent
c. CCCC by GNAT 2
d. CCCC by Sun Ada 8
e. TRADA by GNAT 0
f. TRADA by Sun Ada 0 (6)
g. TRADA by VAX Ada 1
7. Run Ada-ASSURED, 40

Logiscope and SLOC counter

TOTAL 84 Hours performing Reengineering tasks

G-11

Table G-5. Hours Performing General Tasks and Final Report

TASK HOURS COMMENTS

1. Consolidate metrics into
graphs and tables.

a. for Quick Look 40
b. for Stress Test 140
c. for Reengineering 0

2. Write final report narrative.

a. for Quick Look 47
b. for Stress Test 117
c. for Reengineering 51
d. for all other 284
3. Prepare and give status 92 (status meeting w/ Colket and Chiara,
reports and presentations. Riegle and Mumm and FY 96 project review)
TOTAL 450 Hours for General Tasks and Final Report

G-12

PERSON-HOURS TO TRANSLATE QA9 SAMPLE

Tables G-6 and G-7 were used to calculate the total person-hours required to translate the CM S-2
QA9 sampleto Ada. Table G-6 shows the person-hours spent in different phases of the trandation
process and includes total hours by translator. The hours are given when we used the Sun compiler.
Less time was required with the GNAT compiler.

Table G-7 shows the person-hours required to translate 100 source lines of CM S-2 code for the
QA9 sample. Person-hours per 100 SLOC are reported when counting SLOC as ddimiting”$” and
as lines counted by a text editor.

The reader should note the following:

1. Thecolumns “Hours to achieve successful compilation” and “Hours to achieve
successful execution” were obtained from Table C-3. For these columns, the Table C-3
Sun and GNAT hours were added together because the APL translated code was run
through the GNAT compiler first and taken as the starting point when we used the Sun
compiler. The samewas donefor the CCCC translated code.

2. Lesslearning and training time was required for the TRADA trandator than the others.
An NRaD software engineer who participated in the evaluation was already very familiar
with the TRADA trandlator.

3. Person-hours are biased because of differences in the capabilities and experience of the
people who worked on the evaluation. Different people worked with different translators
and Ada compilers.

4. Lesstimewould berequired to translate QA9 today because of bug fixes by the translator
developers.

5. Thetimes shownin Table G-6 areonly for trandliteration. If plans arefor trandator
produced Ada to be deployed and maintained then an additional phaseis needed for Ada
quality improvement. Examples of needed improvements include removal of GOTOs,
removal of deal code, improved packaging, better information hiding, conformance to
Ada quality and style guiddlines, and other enhancements.

6. QA9 did not include 10 to special devices, direct code, or overlays. Thetranslation of
CMS-2 software for actual systems will be considerably more time consuming.

G-13

Table G-1. Person-hours by work phase for QA9 translations

Obtaining and Learning | Developing | Translating to Ada Hours to achieve Hours to achive | Total
installing and harness successful compilation successful Hours
translator training execution

APL 4 (tape) 14 2 1 9 19 49
CCcCcC 16 (tape) 39 0 1 2 10 68
TRADA 7 (electronic 2 4 2 1 6 22

transfer)

G-14

Table G-7. QA9 Person-Hours/100 SLOC Translated

Person-Hours/100 SLOC

Delimiting $ SLOC

Text editor lines SLOC

APL 100(49/3568)= 1.37 100(49/4926)= .99
ccce 100(68/3568)= 1.91 100(68/4926)= 1.38
TRADA | 100(22/3568)= .62 100(22/4926)= .45

G-15

APPENDIX H: ADA 95 QA9: REENGINEERING A MIXED MODE MATH
TEST IN ADA 95

The Ada 95 QA9 was developed to provide additional context in which to assess CMS-2 to Ada
trandation. The QA9 test suite was chosen for application redevelopment. Application
redevelopment affords many opportunities for improvement due to requirement-level reengineering,
exploiting modern language features, and design for reuse. By requirement-level reengineering we
mean reconsidering functionality offered in a CM S-2 application and generating a design that
provides the same functionality as well as meeting new requirements. In this case the new
requirements were to minimize M cCabe cyclomatic complexity and to maximize reuse.

The CMS-2 QA9 program tests accuracy of mathematical operations placing an emphasis on
mixed-mode arithmetic. The QA9 application tests various combinations of integer, real, and fixed
point operands and receptacles. The Ada 95 QA9 was designed to provide the same functionality in a
more extensible way with very little control (McCabe) complexity. The functionality was provided
by designing a class hierarchy of test cases which contains a total of 126 subclasses.

The number of test cases required is the product of

3 different kinds of receptacles (integer, real, fixed),
? Odifferent operand pairs (integer, real, fixed P 3 left x 3 right for infix operations), and
? Sdifferent infix operations (+, -, /, *, **).

Sincethereis no exponentiation (**) operation for fixed point numbers, 9 (1*3*3) must be
subtracted from 135 (9*3*5) to yied 126 subclasses.

Control complexity was minimized since the sdection of which mathematical operation to
execute and which combination of numeric representation and type conversion to useis performed
by the Ada 95 run-time dispatcher for polymorphic operations. That is what allowed the
implementation to achieve a weighted M cCabe complexity metric of 1.1.

Figure H-1 is a graphical depiction of the Target (receptacle) object information and class
structure. Each Target instance has a test case number (Num.), a result, lower and upper bounds on
the answer, and atarget of the operation. The test case number and result are inherited from the
Target superclass. Each subclass has a different type for the bounds and operation target.

Figure H-2 is a graphical depiction of the (infix) Operation object information and class structure.
It shows all 9 combinations of kinds of operand pairs.

Figure H-3 is a graphical depiction of the integer-based part of Test_Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

Figure H-4 is a graphical depiction of the real-based part of Test_ Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

Target

Num : Int
Result: Results

Update
Target_| Target_R Target_X
Target: Int Target: Real Target: Fixed
LowB: Int LowB: Real LowB: Fixed
HighB: Int HighB: Real HighB: Fixed
Define Define Define
Result_Display Result_Display Result_Display

Figure H-1. Class Structure for Target Object

Figure H-5 is a graphical depiction of the fixed-based part of Test_Case object information and
class structure. It shows that each test case has a Target, and Operation (operand combination), and a
mathematical operation.

Given any lesf in the class structure tree, the meaning of the test case can be discerned from the
name. For example, test case R Test Xi_M ishasareal target, its left operand is fixed (X), its right
operand is int (1) and it performs multiplication (M). Sincethe left operand is fixed, theright operand

will be converted to fixed for the computation, and the result will be converted to the target type,
real.

Operation

R_Operation

Left: Real

R_Operation_| R_Operation_R R_Operation_X
Right: Int Right: Real Right: Fixed
|_Operation X_Operation
Left: Int Left: Fixed
|_Operation_| |_Operation_R |_Operation_X X_Operation_| X_Operation_R X_Operation_X
Right: Int Right: Real Right: Fixed Right: Int Right: Real Right: Fixed

Figure H-2. Class Structure for the Operation Object

Test_Case
} Execute <E

}/ Target_| ‘4>~/ |_Test_li ‘ﬂ/LOperationil ‘

}/TargeLR ‘0}/ R_Test_li M/LOperationil‘

}/TargeLX ‘4>~/ X_Test_li ‘4>~/|70perationil‘

I I
}/LTesLILS ‘ }/IiTesLILE ‘

}/IiTeSLILA ‘ }/IiTeSLILM ‘ }/LTestiIiiD ‘

}/RiTe‘SLILS{ }/RiTe‘SLILE‘

I I
}/XiTestiIiiS‘ }/XiTestiIiiE‘

}/RjesuiA }/RiTeSLIU\/* }/RiTestiliiD‘

}/><jesL|LA‘ }/XJesULM‘ }/><7Test7I LD‘

}/ Target_| ‘<>~/ |_Test_Ir ‘<>~/Iioperation7#

}/TargeLR ‘0}/ R_Test_Ir M/Iioperationili*

}/TargeLX ‘<>~/ X_Test_Ir ‘wioperationilﬁ

I I
}/LTesLILS ‘ }/LTesLILE ‘

}/IiTesLIriA ‘ }/IiTesLI riM‘ }/LTesLILD ‘

I I
}/RiTestil r7# }/RiTestil r7E<

I I
}/><7Te st_| LS‘ }/><7Te st_| LE‘

}/RiTesLlrJ# }/ﬁiTestilrJv‘ }/RiTeslilril#

}/><7Test7I rﬁA‘

}/XiTesLlrJv‘ }/XiTestiIriD‘

}/ Target_| ‘»N/ |_Test_Ix ‘»N/LOperationix‘

}/TargeLR ‘4»}/ R_Test_Ix Wioperationi%

}/TargeLX ‘4»~/ X_Test_Ix ‘<>~/LOperaIioh7>#

I I
}/LTesLI xis‘ }/LTesLI xﬁE‘

}/LTesleiA‘ }/IiTesleiM‘ }/LTesLIxiD‘

%7Telﬁ7lx7# %7Telﬁ7lx7#

I I
}/XiTeSLIxi# }/XiTeSLIxiE*

}/ﬁiTesleJ# }/ﬁjesuxﬂ }/ﬁiTesleit%

}4(7Test7lx74 }&jesuu,{ %jesuxj

Figure H-3. Information Structure for the Integer-based Test_Case_Subclasses

Test_Case

T T
A

}/Targeu ‘4»)/ |_Test_Ri M/Rioperalionij

}/TargeLR ‘4»)/ R_Test_Ri M/Rioperalionij

}/Targetix ‘4»)/ X_Test_Ri ‘ﬂ/RioperaﬂonJ

}/IiTes‘LRL# Mjes‘LRLq

MjesLRiA }/LTesLRiM Mjessziq

[[
}/ﬁiTesLRiif# }/ﬁiTesLRL%
. _Test_Ri _Test_Ri
ngTestiRL M F D %

[[
}/Qjesxjeijs }/QiTeSLRL#
_Test_Ri .
R,TESLRL M R*TSSLRLE#

}/Targeu ‘<>~/ |_Test_Rr M/ﬁioperationi?

}/TargeLR ‘<>~/ R_Test_Rr M/ﬁioperationi?

}/TargeLX ‘<>~/ X_Test_Rr ‘4»\&70peration7$

[[
}/IiTeSLRL# }/IiTesLRriq

}/IiTeSLRrJ% }/IiTestiR Lw }/LTGSKiR Lq

R_Test_Rr, R_Test_Rr,
S E

" TesT_RT " TeSTRT " TeSTRT
A M D

}/QiTe‘stiRL% }/QiTe‘stiRL%

}/Targeu ‘<>~/ |_Test_Rx M/Rioperationi*

}/ Target_R ‘ R_Test_Rx Rioperationi*

}/TargeLX ‘<>F X_Test_Rx <>FR70peration7

I I
}{Testﬁinis }{Testﬁiné

}/IiTeSLRXJF }/ﬁTeSLRxJ*d }{TestﬁRxﬁ#

_Test_Rx _Test_Rx
S E

_Test_Rx _Test_Rx _Test_Rx
A M D

_Test_Rx _Test_Rx
S E

Y PR PR

2

Figure H-4. Information Structure for the Real-based Test_Case Subclasses

Test_Case
E|> Execute <E

}/Targeu ‘4»}/ |_Test_Xi Mioperationii

}/ Target R ‘4»% R_Test_Xi ‘Mioperationil‘

}/Targetix ‘»V X_Test_Xi ‘Mioperationi

M Test xi 9
}/ljesLxLA‘ }/LTesLxLM‘

}/LTesLxLD‘

7Test)<i7 S

[% Test xi_s

}/XiTestiXiJ# }/QjesLxLW }/QiTeSLXLI#

}/Targeu ‘4»}/ |_Test_Xr M/Xioperalionjf

}/Target R ‘4% R_Test_Xr ‘<>~/X Operation_| #

}/TargeLX ‘<>~/ X_Test_Xr ‘Mioperaﬂoni#

}/LTSSK7XT74 }/LTSSLXLN*

}/LTeSLX Lq

g Test Xf ES[r_| ES[r_|

_Test_Xr_|]
F§7T95t7>(rﬁ% M

R,TGSLXL&>

}/Targeu ‘4»}/ |_Test_Xx F»N/Xioperationi*

}/TargeLR ‘4>~/ R_Test_Xx ‘MﬁOperationi*

}/TargeLX ‘»N/ X_Test_Xx ‘4>~/X70peration7

7Te517Xx7 S
}/IiTeSLXxJ% }/ﬁTeSLXxJ\'f

}/LTestiXxiq

[[R_Test_Xx
S

_Test_Xx _Test_Xx
A M

[X_Test_Xx
S

_Test_XXx _Test_Xx
A M

Figure H-5. Information Structure for the Fixed-based Test_Case Subclasses Fixed-based

Test_Case Subclasses

APPENDIX I: ADA QUALITY AND STYLE CRITERIA

This appendix provides some additional information on the Ada quality and style produced by the
trandators. The questions were answered by members of the evaluation team who examined the Ada
QAO9s produced by the translators. Analysis tools were not used to answer these questions. An entry
of “NC” (meaning not covered) in the table indicates that the criteria could not be measured by the

QA9 sample.

Table I-1. Ada Quality and Style Criteria- 1

General Criteria APL CCccC TRADA
Y/N Y/N Y/N
1. Did the Ada code compile correctly? N Y Y
COMMENTS: Answers to Table I-1 were given by Ron lwamiya
2. a. Were portions that are not translatable commented out?
b. Did comments clearly indicate what is not translated?
COMMENTS:
3. a. Did translator determine and produce typing that is more N Y N
explicit than the CMS-2 types (e.g., integer, floating, character,
etc.)?
COMMENTS:
4.a. Did translator produce records (for heterogeneous but Y Y Y
related data), arrays, loops, blocks, constants, etc., when
appropriate?
b. Did it associate names with loops and blocks? N
c. Were FOR loops rather than plain loops produced? (FOR Y N

loops are considered to be more maintainable.)

COMMENTS:

Table I-1. Ada Quality and Style Criteria - 2

General Criteria APL CCcCcC TRADA

Y/N Y/N Y/N

5. Did translator produce GENERICS when appropriate? NC NC NC

COMMENTS:

6.a. Did code produced useUNCHECKED CONVERSIONS? N

b. Is the use of UNCHECKED CONVERSIONS justified?

COMMENTS:

7. Did all mathematical functions translate? Y Y Y

COMMENTS:

8. Could translator produce operators ABS, MOD, or REM? NC NC NC

COMMENTS:

9. a. Did translator produce exception handlers? Y N N

b. Did it produce shells for exception handlers that will handle
predefined exceptions?

COMMENTS: APL Translator provided one
INDEX_OUT_OF_ RANGE exception

Table I-1. Ada Quality and Style Criteria - 3

Maintainability APL CCcCcC TRADA
Y/N Y/N Y/N

1. Did translator decide what should go into package Y Y Y
specifications versus bodies (e.g., variable/constant definitions,
type definitions, subprogram definitions)?

COMMENTS:

2.a. Did translator produce multiple packages in a way that N Y Y
logically carries forward structure from CMS-2 source code?
(Desirable)

b. If not, did it produce one big package? Y

COMMENTS: CCCC produced one big file containing the
package specification and body

3. Did translator produce AdaGOTO statements? Y Y Y

COMMENTS: Transfered from the CMS-2 code.

4. Are the variable names produced readable (e.g., do variable Y Y Y
names produced resemble names in CMS-2 code? or Are they
randomly produced)?

COMMENTS:

5. Did translator produce anonymous arrays? NC NC NC

COMMENTS:

6. Was the Ada source code indented? Y Y Y

COMMENTS:

Table I-1. Ada Quality and Style Criteria- 4

Maintainability

APL
Y/N

CCccC
Y/N

TRADA
Y/N

7.a. Were USE clauses always produced?
b. If not, were fully qualified names produced?

COMMENTS: TRADA is user selectable

8. Did subprograms contain only one return statements?

COMMENTS: Some contained more than one.

9.a. Did translator produce CASE statements?
b. If so, did the CASE statement have an others clause?

COMMENTS:

10. Are EQUALS and MEANS (CMS-2 constructs) translated into
Ada in such a way that the Ada code is equally as easy to maintain
as the CMS-2 code? (Question contributed by Dave Martin, Loral
Federal Systems)

COMMENT

11. Did translator produce code that uses named association
(e.g., in calls to subprograms, in generics, etc.)?

COMMENTS:

12. Were CMS-2 comments preserved next to the appropriate
Ada statements?

COMMENTS:

13. Did the translator produce multiple statements per line?

COMMENTS:

Y

Table I-1. Ada Quality and Style Criteria-5

Maintainability APL CCcCcC TRADA
Y/N Y/N Y/N
14. Were reserved words and other elements distinct from each Y Y Y
other (i.e., reserved words may be lower case)?
COMMENTS:
15.a. Did the translator produce one big file? Y
b. Multiple files? Y Y
c. A big file that can easily be broken up into individual files Y
(such as pager format)?
d. Were specifications and bodies in different files? Y N Y
COMMENTS:
16. Was the use of theWITH clause minimized in the package Y Y Y
specification?
COMMENTS:
17. For arrays, were attributes ‘FIRST, ‘LAST, ‘LENGTH, or N N N
‘RANGE used instead of numeric literals?
COMMENTS:
18. Were parentheses used in Ada to specify order of Y N N
expression evaluation?
COMMENTS:
19. Were BOOLEAN types produced? Y Y Y

COMMENTS:

Table I-1. Ada Quality and Style Criteria - 6

Portability APL CCcCcC TRADA
Y/N Y/N Y/N
1l.a. Were types with range constraints or subtypes produced? Y Y Y
b. Were types produced that have range constraints that are Y Y Y
appropriate for the target computer?
COMMENTS:
2. Were MAX_INT, MAX_DIGITS, MIN_INT, MAX_MANTISSA N N N
used? (They should be avoided.)
COMMENTS:
3. Were types INTEGER, LONG_INTEGER, SHORT_INTEGER, N N Y

FLOAT, LONG_FLOAT, SHORT_FLOAT used?
COMMENTS:

Table I-1. Ada Quality and Style Criteria-7

Reliability APL CCcCcC TRADA
Y/N Y/N Y/N

1. Were variables initialized when declared? N N Y

COMMENTS:

2. Were invariant objects declared as constants rather than
variables?

COMMENTS:

3.a. Did translator figure out mode for subprogram parameters Y Y Y
(e.g., in, out, infout)

b. Did it make everything infout? N N N

COMMENTS;

APPENDIX J: ADA LINE COUNTER

ADA SOURCE FOR SLOC COUNTER (ASLOC)

The program below was written for this project to count delimiting semicolons, straight lines of
text, and comments for Ada source code.

-- Ada SLOC Counter
with Ada. Text |G

use Ada. Text | o;

wi t h Ada. Command_Li ne
procedure Asloc is

package Acl renanmes Ada. Command_Li ne;

Unterm nated_String : exception

I nval i d_Ar gunent : exception
Lines : Natural := O;

Loc : Natural := 0O;

Cm : Natural := 0O;

Echo : Bool ean : = Fal se;

Hel p : Bool ean : = Fal se

Row : Bool ean : = True;

Parns : Bool ean := True;

File : Natural := 0O;

F : FiIe_Typé;

subtype Length is Natural range 0 .. 512;
subtype Index is Length range 1 .. Length'last;
subtype Buffers is string(lndex);

Len : Lengt h;
I dx : I ndex;

J1

Buf f er . Buffers;
procedure Print is

begi n
Set _Col (1);
if Echo then
if File > 0 then
Put (Acl . Argunment (File));
el se
Put (" <st andar d_i nput >");
end if;
end if;

if Row then
Put _Li ne(Natural'imge(Loc) & Natural'imge(Cnt)
& Natural'image(Lines));
el se
Set _Col (1);
Put ("Ada LOC(';"')");
Set _Col (16);
Put (" Ada Comments");
Set _Col (31);
Put (" Text Lines");
Set _Col (1);
Put (Nat ural ' i mage(Loc));
Set _Col (16);
Put (Natural 'i mage(Cnt));
Set _Col (31);
Put _Li ne(Natural'image(Lines));
end if;
end Print;

procedure Get_Buff is

begi n
Lines := Lines + 1;
CGet _Line(Buffer, Len);
ldx := 1;

end Get Buff;

procedure Incr is

begi n
ldx := Idx + 1;

end Incr;

pragma Inline(lncr);

function In_String

return Boolean is
begi n

return Buffer(ldx) =""";
end In_String;

procedure Check_Char_Literal is

begi n
if Len - Idx >= 2 and then Buffer(ldx+2) ="''" then
ldx := ldx + 2;
end if;

end Check Char Literal;

functi on Apostrophe

return Boolean is
begi n

return Buffer(ldx) =""";
end Apost rophe;

J2

procedure Find_End_String is

begi n
while Idx < Len | oop
I ncr;
if Buffer(ldx) ="'"" then
return;
end if;
end | oop;

raise Unterm nated_String;
end Find_End_String;

function Eol

return Boolean is
begi n

return ldx > Len;
end Eol ;

functi on Comrent
return Boolean is
begi n
if Buffer(ldx) ="'-"' then
if (ldx < Len) and then Buffer(ldx+1l) ="'-"' then
Cnt :=Cnt + 1;
return True;
el se
return Fal se;
end if;
el se
return Fal se;
end if;
end Conment ;

function Left Paren

return Boolean is
begi n

return Buffer(ldx) = "(";
end Left Paren;

procedure Skip_Right Paren is

begi n
if not Parms then
I ncr;
| oop
whil e not Eol | oop
if Buffer(ldx) ="')" then
return;
el sif Left _Paren then
Ski p_Ri ght _Par en;
end if;
I ncr;
end | oop;
Cet _Buff;
end | oop;
end if;

end Ski p_Ri ght _Paren;

J3

procedure Check_Sem colon is

begi n
if Buffer(ldx) =";"' then
Loc := Loc + 1;
end if;

end Check_Semi col on;

procedure Print_Help is
begi n
Set _Col (1);
Put _Li ne(Acl.Command_Nane & " input: [-h] [-r] [-¢€]
[file_nane]");
Put _Line(" -v (off): verbose output format setting switch");
Put _Line(" -e (off): echo filenane switch");

Put _Line(" -p (on) : count ';' in parameter lists switch");
Put _Line(" -h : print help switch");
Put _Li ne(

filename is the input file. default is
<st andard_i nput >");
end Print_Hel p;

procedure Process_Arg

(N: in Positive) is
begi n
if Acl.Argunent(N)(1) ="'-' then

if Acl.Argunent(N)(2) ="'e' then
Echo : = not Echo;

el sif Acl.Argunment (N)(2) "p' then
Parnms : = not Parns;

el sif Acl.Argument(N)(2) "v' then
Row : = Not Row;

elsif (Acl.Argunent(N)(2) = "'h") then

Hel p := not Hel p;
el se
rai se Invalid_Argunent;
end if;
el se
File := N
end if;

end Process_Arg;

procedure Set_Modde is
begi n
for This in 1 .. Acl.Argunment_Count | oop
Process_Arg(This);

end | oop;

if Help then
File := 0;
Echo : = Fal se;

end if;

if File > 0 then
pen(File => F,
Nane => Acl.Argunent (File),
Mode => In_File);
Set I nput (F);
end if;
end Set Mode;

J4

begi n
Set _Mode;
if Help then
Print _Hel p;
el se
while not End_O _File | oop
Get _Buff;
Check_Li ne:
whil e not Eol | oop
i f Comment then
exit Check_Line;
elsif In_String then
Fi nd_End_Stri ng;
elsif Left _Paren then
Ski p_Ri ght _Par en;
el sif Apostrophe then
Check_Char Literal

el se
Check_Seni col on
end if;
I ncr;
end | oop Check_Li ne;
end | oop;
Print;
end if;
exception
when I nvalid_Argunent =>
Print _Hel p;
when ot hers =>
Put ("Line:");
Put _Li ne(Natural'imge(Lines));
raise;
end Asl oc;

J5

APPENDIX K: SAMPLE SOURCE CODE: QA9 PROCEDURE
QTSYNOPS CMS-2 AND TRANSLATOR PRODUCED ADA

This appendix contains source code for QT SYNOPS, one of the QA9 procedures translated during
Quick Look. The source codeincluded isfor CMS-2 QT SYNOPS and the Ada QTSYNOPS
produced by the three trandlators. The source codeis included so that the reader can see how the
CMS-2 codetrandate. All of QA9 at various stages of the translation process is being made
available on the Web.

CMS-2 QTSYNOPS

OQT 0546
CQT 0547
OQT 0548
OQT 0549
CQT 0550
oQr 0551
OQT 0552
OQr 0553
OQr 0554
OQr 0555
OQT 0556
OQr 0557
OQT 0558
OQT 0559
| NDEX ' $
CQT 0560
oQr 0561
OQr 0562
OQT 0563
OQT 0564
OQT 0565
CQT 0566
OQrT 0567
OQT 0568
OQT 0569
oQr 0570
oQr 0571
oQr 0572
oQr 0573
oQr 0574
oQr 0575
oQr 0576
oQr 0577
oQr 0578
oQr 0579
CQr 0580
OQr 0581
OQr 0582

(EXTDEF) PROCEDURE QTSYNOPS $
COMMENT ~ PUT QA NUMBER | N HEADER $
SET CHAR(28, 4) (VHSYNHED) TO VMIESTNO $
QTHEAD | NPUT VHSYNHED $
| F VINOTSTS LT 1 THEN RETURNS
SET VHTEMP TO H() '' TOP OF FORM CONTROL VRBL'' $
LOOP. VARY VSX2 THRU 4 $
QTSYVL. VARY VX1 THRU (VI NOTSTS-1) $
QISYW:. SET VX2 TO TAQR(VX1, ERRORNO) $
QISYNL. |F VX2 EQ 0 THEN RESUME QTSYV1 $
COMMENT | F THE CODE IS 0 THEN NO TST |'S EXPECTED. BYPASS MESSAGE $
SET VIHIL TO VX1 $
COVMENT SAVE LOOP | NDEX$
SET VX1 TO VSX1*5+VX1 '' COVPUTE TEST NO. FROM LOCP

F VSX2 NOT 0 THEN GOTO FAIL $
F VITESTYP EQ 0 THEN GOTO FAIL $
' MUST BE QA SO NO LI ST OF TESTS PASSED NEEDED ' $
| F VPASS THEN GOTO PASS$
comment OUTPUT PRI NT (VHASTER , VHFOLLOW VHPASS, VHASTER) FHEDSYN $
SET VPASS TO 1 $
PASS. IF VX2 NOT 6 THEN GOTO FAIL $
SET VI X3 TO (VX1+1) + 1000*(VI TESTNO-10) $
comment OUTPUT PRI NT VI X3 FPASS $
COMMENT PRINTS A LI ST OF TESTS THAT PASSED $
GOTO LOOPRES1$
FAI L. I F VSX2 NOT 1 THEN GOTO NOTEXEC $
| F VX2 EQ 7 THEN GOTO EXECHED '' PRI NT OUT HEADER | F FI RST
FAILURE |'S A GENERATI ON ERRCR '' $
IF VX2 GT 5 AND VX2 LT 9D THEN QTCONSW USI NG VX2 THEN
' ' RECORDS TESTS EXECUTED '
GOTO LOOPRESL $
| F VX2 GT 5D THEN GOTO NOTEXEC $
EXECHED. |F VEXEC THEN GOTO EXECL ''SKIP HEADER ' $
IF VITESTYP EQ 1 '' QR TEST'' THEN SET VHTEMP TO H(1) $
comment OUTPUT PRINT VHTEMP ' ' TOP OF FORM IF THIS IS A QR TEST'' $
comment OUTPUT PRI NT (VHASTER , VHFOLLOW VHFAI L, VHASTER)
FHEDSYN $

I
I
COMVENT '

K-1

CQr 0583 comment OQUTPUT PRINT H(0) $

CQTr 0584 SET VEXEC TO 1 $

CQT 0585 EXECL. QTCONSW USI NG VX2 "' PRI NT QUT

CQT 0586 EXECUTI ON ERROR ' &

CQr 0587 GOTO LOCOPRESL $

CQr 0588 NOTEXEC. |F VSX2 NOT 2 THEN GOTO NOTSKI P $

CQTr 0589 I F VITESTYP EQ O THEN GOTO QTSYN2

CQTr 0590 "' MUST BE QA TEST SO NO LI ST OF SKI PPED TESTS NEEDED ' $
CQr 0591 | F VX2 NOT 30D THEN GOTO NOTSKI P $

CQT 0592 | F VSKIP THEN GOTO SKIP $

CQr 0593 comment OUTPUT PRI NT (VHASTER1, VHFOLLOW VHSKI P, VHASTER) FHEDSYN$
CQr 0594 comment OUTPUT PRINT H(0) $

CQTr 0595 SET VSKIP TO 1 $
CQTr 0596 SKIP. SET VAX1 TO VI TESTNO 10 $
CQTr 0597 SET VI X3 TO (VX1+1) +1000D* VAX1 $

CQr 0598 coment OUTPUT PRI NT VI X3 FPASS $

CQT 0599 COMVENT PRI NTS A LI ST OF TESTS THAT WERE SKI PPED (CODE 30) $
CQTr 0600 GOTO LOOPRES1$

CQr 0601 NOTSKIP. |F VSX2 NOT 3 THEN GOTO NOTVI S $

CQT 0602 | F VX2 GTI 13D THEN GOTO NOTVI S $
CQTr 0603 | F VX2 LT 9D THEN GOTO LOOPRES $
CQT 0604 I F VITESTYP EQ O THEN GOTO QTSYN2

CQT 0605 "THI S MUST BE A QA TEST SO NO VI SUALS' ' $

CQT 0606 IF WIS THEN GOTO VI SUAL $

CQr 0607 conment OUTPUT PRI NT (VHASTERL, VHFOLLOW VHVI SUAL, VHASTER)
CQT 0608 FHEDSYN $

CQr 0609 comment OUTPUT PRINT H(0) $

CQr 0610 SET WIS TO1 $

CQr 0611 VI SUAL. QTERRD ' ' VI SUAL TESTS PRINT QUT '' $

CQr 0612 GOTO LOOPRESL $

CQT 0613 NOTVIS. I F VSX2 NOT 4 OR VX2 LT 6 OR(VX2

CQr 0614 GI 8D AND VX2 LT 14D) OR VX2 EQ 30D THEN GOTO LOOPRES $
CQTr 0615 I F VITESTYP EQ O THEN GOTO QTSYN2

CQTr 0616 "'"TH S MUST BE A QA TEST SO NO SPECI ALS' ' $
CQr 0617 | F VSPEC THEN GOTO SPEC1 $

OQT 0618 comment OUTPUT PRI NT (VHASTERL, VHFOLLOW VHSPEC, VHASTER)
CQr 0619 FHEDSYN $

OQT 0620 cormment OUTPUT PRINT H(0) $

oQr 0621 SET VSPEC TO 1 $

OQT 0622 SPECL. QTERRE ' ' ERROR CODES 14-29'' $

OQT 0623 COMMENT ((LINE* $

OQT 0624 LOOPRES1. SET TAQRTYP(VX2, TERRORCT) TO TAQRTYP(VX2, TERRORCT) +1$
OQT 0625 LOOPRES. SET VX1 TO VIHIL $

OQr 0626 END QTSYV1 $

oQr 0627 END LOOP $

OQT 0628 COMMENT PRI NT OUT HEADER AND ALL TOTALS $

OQr 0629 QTSYN2. QTMESSW USI NG 4$

OQT 0630 COMMENT PRI NT OUT NUMBER OF STUBBED TESTS $

CQTr 0631 | F STUBCNT NOT 0 THEN BEG N $

CQr 0632 comment OUTPUT PRI NT STUBCNT FORMSTUB $

CQTr 0633 END $

CQT 0634 SET VEXEC, WI S, VSPEC, VPASS, VSKI P TO 0 '' RESET FLAGS ' $

CQr 0635 comment OUTPUT PRINT H(A) '' CLEAR MAJOR HEADER AND TOP OF FORM ' $
CQT 0636 RETURN $

K-2

CQTr 0637 END- PROC QTSYNOPS $

APL GENERATED ADA QTSYOPS

procedure QISYNCPS i s -- 1366
begi n --
vhsynhed(29..32) := vntestno ; -- 1368
QTHEAD (vhsynhed & c2a_bl anks(1..28)) ; -- 1369
if vinotsts < 1 then -- 1370
return ; --
end if ; --
vhtemp := " " & c2a_blanks(1..19) ; -- 1371 TOP OF
FORM CONTROL VRBL
<<LOOP_D>> -- 1372
for vsx2 x in 0 .. 4 loop --
<<QIrsSYvVi>> -- 1373
vx1l := 0 ; --
while vx1 <= (vinotsts-1) loop --
<<QTSYW>> -- 1374
vx2 := taqr(vxl).errorno ; --
<<QTSYN1>> -- 1375

if vx2 = 0 then --
goto QISYV1l_E ,; - -

end if ; --
-- 1376 IF THE CODE IS 0 THEN NO TST | S EXPECTED. BYPASS MESSAGE
vi h1l := vx1 ; -- 1377
-- 1378 SAVE LOOP | NDEX
vx1l := vsxl * 5 + vx1 ; -- 1379 COWUTE TEST NO FROM LOOP
| NDEX
if vsx2 x /=0 then -- 1380
goto FAIL ; - -
end if ; --
if vitestyp = 0 then -- 1381
goto FAIL ; - -
end if ; --
-- 1382 MUST BE QA SO NO LI ST OF TESTS PASSED NEEDED
i f vpass then -- 1383
goto PASS ; - -
end if ; --
-- 1384 OQUTPUT PRI NT (VHASTER , VHFCOLLOW VHPASS, VHASTER) FHEDSYN
vpass := TRUE ; -- 1385
<<PASS>> -- 1386
if vx2 /=6 then --
goto FAIL ; - -
end if ; --
vix3 :=(vx1 +1) + 1000 * (vitestno - 10) ; -- 1387

-- 1388 QUTPUT PRI NT VI X3 FPASS

-- 1389 PRINTS A LI ST OF TESTS THAT PASSED
goto LOOPRESL ; -- 1390
<<FAl L>> -- 1391
if vsx2 x /=1 then --

K-3

got o NOTEXEC ;
end if ;
if vx2 =7 then
got o EXECHED ;

ERRCR

end if ;

if vx2 > 5 and then vx2 < 9 then --

QITCONSW (vx2) ;
1395 RECCRDS TESTS EXECUTED
got o LOOPRESI
end if ;
if vx2 > 5 then
got o NOTEXEC ;
end if ;
<<EXECHED>>
if vexec then
got o EXEC1
end if ;
if vitestyp = 1 then

vhtenmp := "1" & c2a_bl anks(1..19)

end if ;

1392 PRINT OUT HEADER I F FI RST
FAI LURE | S A GENERATI ON

1394

1396

1397

1398 SKI P HEADER

1399 QR TEST

1400 OQOUTPUT PRI NT VHTEMP TOP OF FORMIF THIS IS A QR TEST
1401 CQUJTPUT PRI NT (VHASTER , VHFOLLOW VHFAI L, VHASTER)

1402 FHEDSYN
1403 CQUTPUT PRI NT H(0)
vexec := TRUE ;
<<EXEC1>>
QTCONSW (vx2) ;
goto LOOPRESI ;
<<NOTEXEC>>
if vsx2 x /= 2 then
goto NOTSKI P ;
end if ;
if vitestyp = 0 then
goto QISYN2
end if ;

-- 1404
1405 PRI NT OUT
EXECUTI ON ERROR
1407
1408

1409

1410 MJST BE QA TEST SO NO LI ST OF SKI PPED TESTS NEEDED

if vx2 /= 30 then
goto NOTSKI P ;

end if ;

if vskip then
goto SKIP ;

end if ;

1413 CQUTPUT PRI NT (VHASTERL, VHFOLLOW

1414 CQUTPUT PRI NT H(0)

vskip := TRUE ;

<<SKI P>>

vaxl := vitestno - 10 ;

vix3 := (vx1 + 1) + 1000 * vax1 ;

1418 CQOUTPUT PRI NT VI X3 FPASS
1419
goto LOOPRESI ;
<<NOTSKI P>>
if vsx2 x /= 3 then
goto NOTVIS ;

K-4

1411

1412

VHSKI P, VHASTER) FHEDSYN

-- 1415
1416

- 1417

PRINTS A LI ST OF TESTS THAT WERE SKI PPED (CODE 30)

1420
1421

end if ; - -

if vx2 > 13 then -- 1422
goto NOTVIS ; - -
end if ; - -
if vx2 < 9 then -- 1423
got o LOOPRES ; - -
end if ; - -
if vitestyp = 0 then -- 1424
goto QISYN2 ; - -
end if ; - -
-- 1425 TH'S MUST BE A QA TEST SO NO VI SUALS
if vvis then -- 1426
goto VI SUAL ; - -
end if ; -

-- 1427 OUTPUT PRI NT (VHASTERL, VHFCLLOW VHVI SUAL, VHASTER)
-- 1428 FHEDSYN
-- 1429 CQUTPUT PRI NT H(O0)

vvis := TRUE ; -- 1430

<<VI| SUAL>> -- 1431 VISUAL TESTS PRI NT OUT
QTERRD ; - -

goto LOOPRESL ; -- 1432

<<NOTVI S>> -- 1433

if vsx2_x /=4 or else vx2 < 6 or else (vx2 --
> 8 and then vx2 < 14) or else vx2 = 30 then -- 1434
got o LOOPRES ; - -
end if ; --
if vitestyp = 0 then -- 1435
goto QISYN2 ; - -
end if ; --
-- 1436 TH S MUST BE A QA TEST SO NO SPECI ALS
if vspec then -- 1437
goto SPEC1 ; - -
end if ; --
-- 1438 CQUTPUT PRI NT (VHASTER1, VHFOLLOW VHSPEC, VHASTER)
-- 1439 FHEDSYN

-- 1440 OQUTPUT PRI NT H(0)

vspec := TRUE ; -- 1441
<<SPEC1>> -- 1442 ERROR CODES 14-29
QTERRE ; --
<<LOCPRES1>> -- 1444
tagrtyp(vx2).terrorct := taqrtyp(vx2).terrorct + 1 ; --
<<LOOPRES>> -- 1445
vx1l := vihll ; --
<<QISYV1_E>> -- 1446
vxl := vx1l + 1 ; --
end | oop ; --
VSX2 1= vsx2 x + 1 ; -- 1447
end | oop ; --
-- 1448 PRI NT OUT HEADER AND ALL TOTALS
<<QITSYN2>> -- 1449

QITMESSW (4) ; - -
-- 1450 PRI NT OQUT NUVBER OF STUBBED TESTS
if stubcnt /= 0 then -- 1451
-- 1452 QUTPUT PRI NT STUBCNT FORVSTUB

K-5

nul | ;
end if ;
vexec =
VVvis =
vspec :
vpass :
vskip :

FALSE
FALSE ;
FALSE
FALSE
FALSE

-- 1453

-- 1454 RESET FLAGS

-- 1455 OQUTPUT PRINT H(A) CLEAR MAJOR HEADER AND TOP OF FORM

return ;

end QTSYNOPS ;

-- 1456
-- 1457

CCCC GENERATED ADA QTSYOPS

PROCEDURE QTSYNCPS | S
PUT QA NUMBER | N HEADER

BEG

MESSAGE

N

ASSI GN_CHAR_SUBSTRI NG (VHSYNHED. ALL. OVER, 28, 4, VMITESTNO. ALL. OVER)

QIrHEAD (VHSYNHED. ALL. OVER) ;
I F VI NOTSTS. ALL. OVER<1 THEN

RETURN;

END | F;

VHTEMP. ALL. OVER :

<< LOOP_0 >>

VSX2. ALL. OVER : =
VWHI LE (VSX2. ALL. OVER<=4) LOCP

<< QISYvl >>
VX1. ALL. OVER : =

1 .

1 .

PAD(" ", 20) ;

VWHI LE (VX1. ALL. OVER<=(VI NOTSTS. ALL. OVER-1)) LOCP
<< QISYw >>
VX2. ALL. OVER : =

FI ELD H FCN_|I NTEGER(TAQR wor ds. ALL(0, VX1. ALL. OVER

), 0,8)

<< QISYN1 >>
I F VX2. ALL. OVER=0 THEN
GOTO next _stnt_QISYV1 ;

END | F;

IF THE CODE IS 0 THEN NO TST | S EXPECTED. BYPASS

VI HIL. ALL. OVER : = VX1. ALL. OVER ;
SAVE LOCP | NDEX

VX1. ALL. OVER :
| F VSX2. ALL. OVER/ =0 THEN

GOTO FAIL
END | F;

| NTEGER(VSX1. ALL. OVER) *5+VX1. ALL. OVER ;

I F VI TESTYP. ALL. OVER=0 THEN

GOTO FAIL

"' MUST BE QA SO NO LI ST OF TESTS PASSED NEEDED '

K-6

END | F;
I F int_to_bool (VPASS. ALL. OVER) THEN
GOTO PASS ;
- - OUTPUT PRI NT (VHASTER , VHFOLLOW VHPASS, VHASTER)
FHEDSYN
END | F;
VPASS. ALL. OVER : = 1 ;
<< PASS >>
I F VX2. ALL. OVER/ =6 THEN
GOTO FAIL ;
END | F;
VI X3. ALL. OVER : = (VX1. ALL. OVER+1) +1000* (VI TESTNO. ALL. OVER- 10) ;
-- OQUTPUT PRI NT VI X3 FPASS
-- PRI NTS A LI ST OF TESTS THAT PASSED
GOTO LOOPRESL ;
<< FAIL >>
| F VSX2. ALL. OVER/ =1 THEN
GOTO NOTEXEC ;
END | F;
| F VX2. ALL. OVER=7 THEN
GOTO EXECHED ;
END | F;
IF VX2. ALL. OVER> 5 AND VX2. ALL. OVER<9 THEN
DECLARE
QTCONSW.i nvalid : BOOLEAN ;
BEG N
QTCONSW (VX2. ALL. OVER , QICONSW.invalid) ;
END;
GOTO LOOPRESI ;
END | F;
I F VX2. ALL. OVER> 5 THEN
GOTO NOTEXEC ;
END | F;
<< EXECHED >>
I F int_to_bool (VEXEC. ALL. OVER) THEN
GOTO EXEC1 ;
END | F;
| F VI TESTYP. ALL. OVER=1 THEN
--QR TEST
VHTEMP. ALL. OVER : = PAD("1", 20) ;
- - OQUTPUT PRINT VHTEMP '"TOP OF FORMIF THHS IS A QR
TEST" '
- - OQUTPUT PRI NT (VHASTER , VHFOLLOW VHFAI L, VHASTER)
- - FHEDSYN
- - OUTPUT PRI NT H(0)
END | F;
VEXEC. ALL. OVER : = 1 ;
<< EXECl1l >>
DECLARE
QTCONSW.i nval id : BOOLEAN ;
BEG N
QTCONSW (VX2. ALL. OVER , QICONSW.invalid) ;
END;
GOTO LOOPRESL ;

K-7

FHEDSYN

<< NOTEXEC >>
| F VSX2. ALL. OVER/ =2 THEN
GOTO NOTSKI P ;
END | F;
| F VI TESTYP. ALL. OVER=0 THEN
GOTO QISYN2 ;
END | F;
I F VX2. ALL. OVER/ =30 THEN
GOTO NOTSKI P ;
END | F;
I F int_to_bool (VSKI P. ALL. OVER) THEN
GOTO SKI P ;
- - OUTPUT PRI NT (VHASTER1, VHFOLLOW VHSKI P, VHASTER)

- - OUTPUT PRI NT H(0)
END | F;
VSKI P. ALL. OVER : = 1 ;
<< SKIP >>
VAX1. ALL. OVER :
VI X3. ALL. OVER :
OVER)) ;
-- OQUTPUT PRI NT VI X3 FPASS
-- PRI NTS A LI ST OF TESTS THAT WERE SKI PPED (CCDE 30)
GOTO LOOPRESL ;
<< NOTSKI P >>
| F VSX2. ALL. OVER/ =3 THEN
GOTO NOTVI S ;
END | F;
I F VX2. ALL. OVER> 13 THEN
GOTO NOTVI S ;
END | F;
I F VX2. ALL. OVER<9 THEN
GOTO LOOPRES ;
END | F;
| F VI TESTYP. ALL. OVER=0 THEN
GOTO QISYN2 ;
END | F;
IF int_to_bool (WIS ALL. OVER) THEN
GOTO VI SUAL ;
- - OUTPUT PRI NT (VHASTER1, VHFOLLOW VHVI SUAL, VHASTER)
- - FHEDSYN
- - OUTPUT PRI NT H(0)
END | F;
WIS, ALL. OVER : = 1 ;
<< VI SUAL >>
QTERRD ;
GOTO LOOPRESL ;
<< NOTVI S >>
I F VSX2. ALL. OVER/ =4 OR VX2. ALL. OVER<6 OR (VX2.ALL. OVER> 8 AND

fi xed32s0(VI TESTNO. ALL. OVER- 10) ;
| NTEGER((VX1. ALL. OVER+1) +FLOAT(1000* VAX1. ALL.

. ALL. OVER<14) OR VX2. ALL. OVER=30 THEN
GOTO LOOPRES ;

END | F;

I F VI TESTYP. ALL. OVER=0 THEN

K-8

GOTO QISYN2 ;
END | F;
I F int_to_bool (VSPEC ALL. OVER) THEN
GOTO SPEC1 ;
- - OUTPUT PRI NT (VHASTER1, VHFOLLOW VHSPEC, VHASTER)
- - FHEDSYN
- - OUTPUT PRI NT H(0)
END | F;
VSPEC. ALL. OVER := 1 ;
<< SPEC1 >>
QTERRE ;
-- ((LI Ne*
<< LOOPRES1 >>
FI ELD H PROC | NTEGER (FI ELD H FCN_I NTEGER(TAQRTYP_wor ds. ALL(O,

VX2. ALL. OVER), 16, 16) +1, 16, 16, TAQRTYP_wor ds. ALL(0, VX2. ALL. OVER)

)
<< LOOPRES >>
VX1. ALL. OVER : = VIHIL. ALL. OVER ;
<< next_stnt _QISYvl >>
VX1. ALL. OVER : = VX1. ALL. OVER+1 ;

END LOOP;

<< next_stnt LOOP_0 >>

VSX2. ALL. OVER : = | NTEGER(VSX2. ALL. OVER) +1 ;
END LOOP;

-- PRI NT OQUT HEADER AND ALL TOTALS

<< QISYN2 >>

DECLARE
QTMESSW.inval i d : BOOLEAN ;
BEG N
QTMESSW (4 , QTMESSWinvalid) ;
END;

-- PRI NT OQUT NUMBER OF STUBBED TESTS
| F STUBCNT. ALL. OVER/ =0 THEN

NULL; - -

-- QUTPUT PRI NT STUBCNT FORMSTUB
END | F;
VEXEC. ALL. OVER : = O ;
-- RESET FLAGS
WIS, ALL. OVER := 0 ;
VSPEC. ALL. OVER :
VPASS. ALL. OVER :
VSKI P. ALL. OVER :
-- QUTPUT
RETURN;

0
0
0 ;
PRINT H(A) '' CLEAR MAJOR HEADER AND TOP OF FORM '

END QTSYNOPS ;

TRADA GENERATED ADA QTSYNOPS

PROCEDURE Q synops | S

K-9

I nval i d_paraneter : Bool ean;

BEG N -- QISYNOPS

-- PUT QA NUMBER | N HEADER
Vhsynhed (29 .. 32) := Vntestno;
Q@ head (Vhead_i nput => Vhsynhed & " ");
IF Vinotsts < 1
THEN
RETURN;
END | F;

Vhtenp : =" ", -- TOP OF FORM CONTROL VRBL

<< @syvl >>
Vx1 := 0;
LOCP
- -
-- ERRORNO is overlaid
-- CQr 0554 QISywa. SET VX2 TO TAQR(VX1, ERRORNO) $
<< Qsywd >>
Vx2 := Taqr (Vx1).Errorno;
<< @synl >>
IF w2 =0
THEN
GOTO @ syvl_resune,
END | F;
-- IF THE CODE IS 0 THEN NO TST | S EXPECTED. BYPASS MESSAGE
Vi h1l = Wx1;
-- SAVE LOOP | NDEX
Vx1 := Vsx1 * 5 + Vx1; -- COWPUTE TEST NO. FROM LOOP | NDEX
IF Vsx2 /=0
THEN
Q&OT0 Fai | ;
END | F;
IF Vitestyp = 0
THEN
Q&OT0 Fai | ;
END | F;
-- "' MJUST BE QA SO NO LI ST OF TESTS PASSED NEEDED *
| F Vpass
THEN
G&OTO Pass;
END | F;
-- QUTPUT PRI NT (VHASTER , VHFOLLOW VHPASS, VHASTER) FHEDSYN
Vpass : = True;
<< Pass >>
IF W2 /=6
THEN
Q&OT0 Fai | ;
END | F;

K-10

Vix3 := Vx1 + 1 + 1000 * (Vitestno - 10);
-- QUTPUT PRI NT VI X3 FPASS
-- PRINTS A LI ST OF TESTS THAT PASSED
GOTO Loopresl
<< Fail >>
IF Vsx2 /=1
THEN
GOTO Not exec;
END | F;
IF W2 =7
THEN
GOTO Exeched;
-- "N=== Enbedded note(s):
-- "'"PRINT OQUT HEADER | F FI RST
-- FAI LURE | S A GENERATI ON ERRCR '
END | F;
IF V2 > 5 AND THEN Vx2 < 9
THEN
Q consw (Vx2, Invalid_paraneter);
I F I nvalid_paraneter
THEN
RAI SE Constraint_error;
END | F;
-- RECORDS TESTS EXECUTED
GOTO Loopresl;
END | F;
IF W2 > 5
THEN
GOTO Not exec;
END | F;
<< Exeched >>
| F Vexec
THEN
GOTO Execl
-- "N=== Enbedded note(s): ''SKI P HEADER '
END | F;
IF Vitestyp = 1
THEN
Vhtenmp := "1 "
END | F;
-- OQUTPUT PRINT VHTEMP ''TOP OF FORMIF THHS IS A QR TEST"'
-- QUTPUT PRI NT (VHASTER , VHFOLLOW VHFAI L, VHASTER)
-- FHEDSYN
-- QUTPUT PRI NT H(0)
Vexec := True
<< Execl >>
Q consw (Vx2, Invalid_paramneter);
I F I nvalid_paraneter
THEN
RAlI SE Constraint_error;
END | F;
-- ~=== Enbedded note(s):
-- ""PRINT QUJT
-- EXECUTI ON ERRCR '

K-11

GOTO Loopresl;
<< Not exec >>
IF Vsx2 /=2
THEN
@GOTO Not ski p;
END | F;
IF Vitestyp = 0
THEN
GOTO Q@ syn2;
-- ~=== Enbedded note(s): ''MJST BE QA TEST SO NO LI ST COF
-- SKIPPED TESTS NEEDED *
END | F;
IF w2 /= 30
THEN
@GOTO Not ski p;
END | F;
I F Vskip
THEN
GOTO SKi p;
END | F;
-- QUTPUT PRI NT (VHASTER1, VHFOLLOW VHSKI P, VHASTER) FHEDSYN
-- QUTPUT PRI NT H(0)
Vskip := True;

<< Skip >>
Vaxl := A 32 s 0 (Vitestno - 10);
Vix3 :=1_32 s (A32.S0 (Wl + 1) + A32_.S 0 (1000 * Vaxl));

-- QUTPUT PRI NT VI X3 FPASS
-- PRINTS A LI ST OF TESTS THAT WERE SKI PPED (CODE 30)
GOTO Loopresl;
<< Not skip >>
IF Vsx2 /=3
THEN
GOTO Not vi s;
END | F;
IF W2 > 13
THEN
GOTO Not vi s;
END | F;
IF W2 < 9
THEN
GOTO Loopr es;
END | F;
IF Vitestyp = 0
THEN
GOTO Q@ syn2;
-- ~=== Enbedded note(s): "' THI S MUST BE A QA TEST SO NO
-- VISUALS''
END | F;
IF Wis
THEN
GOT0 Vi sual ;
END | F;
-- OUTPUT PRI NT (VHASTER1, VHFOLLOW VHVI SUAL, VHASTER)
-- FHEDSYN

K-12

khkkkkkhkkhkkk*x

-~ QUTPUT PRI NT H(0)

Wis := True;
<< Vi sual >>
Qerrd;

-- ~=== Enbedded note(s): ''VISUAL TESTS PRI NT OQUT "'
GOTO Loopresl;
<< Notvis >>
IF Vsx2 /=4
OR ELSE Wx2 < 6
OR ELSE (Vx2 > 8 AND THEN Vx2 < 14)
OR ELSE Wx2 = 30
THEN
GOTO Loopr es;
END | F;
IF Vitestyp = 0
THEN
GOTO Q@ syn2;
-- ~=== Enbedded note(s): "' THI S MUST BE A QA TEST SO NO
-- SPECIALS''
END | F;
| F Vspec
THEN
GOTO Specl;
END | F;
-- OQUTPUT PRI NT (VHASTER1, VHFOLLOW VHSPEC, VHASTER)
-- FHEDSYN
-- QUTPUT PRI NT H(0)
Vspec : = True;
<< Specl >>
Qerre;
-- ~=== Enbedded note(s): ''ERROR CODES 14-29"'

<< Loopresl >>

Taqgrtyp (Vx2).Terrorct := Taqrtyp (Vx2).Terrorct + 1;
<< Loopres >>

Vx1 := Vihll;

<< Q@ syvl resune >>

Vx1 1= W1 + 1;

EXIT WHEN Vx1 > Vinotsts - 1,

END LOCP;

n=== Enbedded note(s): '' QR TEST''

Vsx2 = Vsx2 + 1,
EXIT WHEN Vsx2 > 4,
END LOOP,
-- PRINT QUT HEADER AND ALL TOTALS
<< Qsyn2 >>
Q messw (4, Invalid_paraneter);
I F I nvalid_paramneter

THEN

RAlI SE Constraint_error;

END |

F;
PRI NT OQUT NUVBER OF STUBBED TESTS

K-13

hkhkkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhdhhdhddhddhddhddhdhhddrdhddddrdddhddrdrdrddxrdrdxd*x

IF Stubcnt /=0
THEN
NULL;

-- ~=== Enbedded note(s): "' OUTPUT PRI NT STUBCNT FORMSTUB "'
END | F;

Vskip := Fal se; -- RESET FLAGS
Vpass : = Vskip; -- RESET FLAGS
Vspec := Vpass; -- RESET FLAGS
Wis = Vspec; -- RESET FLAGS
Vexec := Wis; -- RESET FLAGS

-- QUTPUT PRINT H(A) '' CLEAR MAJOR HEADER AND TOP OF FORM '
RETURN;

END QX synops;

K-14

APPENDIX L: TRANSLATION ANALYSIS TOOLS

TableL-1 isatablethat contains a description and points-of-contact for analysis tools used during
the experiment in addition to the CMS-2 to Ada trandators.

Table L-1. Description and POCs for Analysis Tools Applied - 1

Tool

Description

Point-of-Contact

Ada-ASSURED

Checks for conformance to guidelines and can
automatically make some changes to the code
so that it conforms.

Jeffrey Burns
GrammaTech

One Hopkins Place
Ithaca, NY 14850
(607) 273-7340

Ada SLOC Counter

Counts Ada source lines of code (;), Ada
comments, and total lines.

Hans Mumm

NRaD

53140 Systems St.
San Diego, CA 92152
(619)553-4004

Assembler Design
Extractor (ADE)

Converts assembler to CMS-2

Jim O’Sullivan

SYNETICS Corporation
4485 Danube Drive, Suite 24
Bayberry Office Park

King George, VA 22485
(540)663-2137

CMS-2 Source Code
Design Analyzer
(DESAN)

Assists in the reengineering of CMS-2 code
prior to translation to Ada. ldentifies overlays,
data units that are defined but not referenced,
and data units that are referenced but not set to
a value.

Hans Mumm

NRaD

53140 Systems St.
San Diego, CA 92152
(619)553-4004

CMS-2 Source Code
Metrics Generator

Produces source code statistics (e.g., SLOC for
CMS-2 and direct code, source statements in

Hans Mumm
NRaD

(METRC) DDs and SYSPROCS), a keyword report, and 53140 Systems St.
Halstead and McCabe complexity metrics. San Diego, CA 92152
(619)553-4004
Logiscope Produces many quality metrics from source Dennis Andrews
code, including Halstead and McCabe measures, | Yerilog
comments per lines of executable statements, g?“ltg ;’S’g Freeway

mean SLOC for a subprogram, number of GOTO
statements, number of returns in a subprogram
and others. A CMS-2 Logiscope capability is
available from Verilog.

Dallas, TX 75234
(800)424-3095, x24

1 SL.OC count is provided in Appendix J.

L-1

TableL-2 isatablethat contains a description and points-of-contact for analysis tools that are
potentially useful to a project that translates source code from CMS-2 to Ada.

Table L-2. Description and POCs for Potentially Useful Analysis Tools - 1

Tool Description Point-of-Contact
AdaMat Provides detailed information on Chris McGuire _
the maintainability, portability, and Dynamics Research Corporation
reliability of Ada source. 60 Frontage Road
Andover, MA 01810
(508)475-9090, x1730
CLUE Prototype CMS-2 reverse Suzy Roberts
engineering tool that produces data Mitre Corporation
flow diagrams, control flow diagrams Clue@mitre.org
and reports to assist the programmer | 202 Burlington Road
in understanding CMS-2 source Mail Stop K329
code. Bedford MA 01730
(617)271-8963
HyperBook Facilitates the analysis of program Noah Prywes

documentation, specifically source
code. The tool facilitates software
understanding and maintenance.
Software is analyzed to produce a
documentation database. The
database is browsed from UNIX or
PC workstations on a network by
using programs written in Java.

Computer Command and
Control Company

2300 Chestnut Street
Suite 230

Philadelphia, PA 199103
(215)854-0555

Logiscope CMS-2

Produces many quality metrics
from CMS-2source code, including
Halstead and McCabe measures,
comments per lines of executable
statements, mean SLOC for a
subprogram, number of GOTO
statements, number of returns in a
subprogram and others. A CMS-2
Logiscope capability is available from
Verilog.

Dennis Andrews
Verilog

3010 LBJ Freeway
Suite 900

Dallas, TX 75234
(800)424-3095, x24

L-2

Table L-2. Description and POCs for Potentially Useful Analysis Tools - 2

Tool

Description

Point-of -Contact

Object Abstractor

Assists in making translated Ada
higher quality. Itincludes a
capability to convert non object
oriented Ada to object oriented Ada
in a semi-automated manner.

Romel Rivera

Xinotech Research Incorporated
1313 Fifth Street Southeast
Suite 213

Minneapolis, MN 55414
(612)379-3844

Pretty printers

Makes the Ada source code more
readable and maintainable.

For pretty printers in the Public Ada
Library (PAL)
http://wuarchive.wustl/edu/languages/ada/

Reengineering Toolkit

Aids software engineers in
restructuring existing Ada source
code. The restructuring facilitates
readability and maintainability. This
toolset is especially useful when
source code is reused or translated
from another language into Ada.

Kevin McQuown
Rational

3963 Via Holgura
San Diego, CA 92130
(619)794-6801

L-3

APPENDIX M: MK-2 CMS-2L AND ADA SOURCE CODE

This appendix contains CMS-2L and Ada source code for the NAV SEA project, Combat Control
System MK-2 Fire Control System. This software computes target location information. TheCMS-
2L code contains no direct code.

The CMS-2L code was translated by the APL, CCCC, and TRADA tranglators. The APL
trandator produced some Ada statements, was incomplete, and did not compile. The CCCC
trangator produced code that compiled and executed. The TRADA translator produced no Ada
source code. For purposes of comparison, the CMS-2L code was also translated to Ada by hand.
The hand version included some re-engineering. These artifacts are provided as sections of this
appendix.

Original CMS-2L MK-2 Fire Control System
Ada Trandation Using APL Trandlator

APL Trandlator Predefined Packages

Ada Trandation Using CCCC Tranglator
CCCC Trandator Predefined Packages

Ada Reengineering of MK-2 Code by Hand

The Ada Code Reengineering of MK -2 code produced by hand represents the final desired
product from the reengineering of CMS-2 Code. In this regard, it is useful as a benchmark for
comparison.

Of the two successful translations both were problematic.

The CCCC tranglation was successful in that it compiled correctly. Unfortunately, the
code produced did not use the features of Ada that facilitate code maintenance or
reengineering, but rather used features undesirable in a mission-critical, safety-critical
application. If any reengineering or code evolution is required, it would be far better to
perform a manual translation from the CM S-2 than to use any of the CCCC generated
translated output. On the other hand, the CCCC trandlator could be extremely useful in
trandating code where that code would be integrated into a modern Ada environment,
unchanged. This could be a legitimate requirement for many applications. However, this
approach is not recommended should there ever be a desire to evolve or reengineer the
code.

The APL trangdlation did not generate compilable code. In fact the 100+ additional
comments represent areas the APL translator could not translate. However, most of these
comments represented code where manual intervention is really desirablein order to
produce higher quality translated code. In a sense, the APL trandator could be used as an
effective tool in supporting an engineer in the reengineering of the CMS-2 code into Ada.

Basically, the output of the CCCC translation could be used as is with minimal modifications but
could not be easily reengineered; the output of the APL translator would require significant work
resulting in a reasonably engineered translation. Any translated product would require additional
reengineering in order to evolve the code with new requirements. Comparisons between the hand
generated code and the translated code are made in the following aress:

Source Code Lines of Code (SLOC)
Naming Conventions

Elimination of Intermediate Variables
Use of Standard Packages

Memory Management

Performance

Position to Reengineer

SOURCE CODE LINES OF CODE (SLOC)
Table M-1 provides the SLOC counts for the MK-2 source code.

Table M-1. MK-2 Source Lines of Code Counts

Lines of text (Delimiting $ or ;) Comments

CMS-2L MK-2 Code 298 205 178/204"
APL Ada 374 97 274
APL Basic_Defns 642 317 165
APL Total 1016 414 439
CCCC Ada 936 454 175
CCCC pre_defined 1305 1305 0
CCCC Total 2241 1759 175
TRADA Ada — — —
TRADA — — —
TRADA Total — — —
Hand translation 288 99 132

It should be noted that the hand tranglation contains about 50% SLOC compared to the original
CMS-2L code.

! Thefirst number represents the number of informational comments while the second is the number of lines of text
M -2

NAMING CONVENTIONS

The original CMS-2L MK-2 code used cryptic 8 letter naming conventions. Ada translations
require meaningful names to facilitate understanding of the code. Automatic name conversion is not
possible. Thelast page page M-54 of the Hand reengineered Ada code contains mappings from
CMS-2 identifiers to Ada 95 identifiers. Tools to support automatic name conversion throughout all
system packages are highly desirable.

ELIMINATION OF INTERMEDIATE VARIABLES

Intermediate variables are used extensively in CMS-2. In Ada, their useis avoided. For example,
to compute latitude, Ada might use the statement:

Latitude := Arcsin (Sin(Lat)*Cos(Theta) + Cos(Lat)*Si n(Theta)*Cos(Brg));

In CMS-2, one would typically break the statement into a number of intermediate statements with
locally declared variables. The data definitions would appear as:

LOCRBLL sub-dd $

vrbl TEMPARG f $ ''interimvalue for arcsin
vrbl COSTHET f $ ''Cosine RIRe''

vrbl SINTHET f $ ''Sin R Re''

vrbl COSLAT1 f $ ''Cosine LAT1"'

vrbl SINLAT1 f $ ''Sin LAT1''

vrbl COSBRG f $ ''Cosine BRG''

virbl SINBRG f $ ''Sin BRG ''

end- sub-dd LOCRBLL $

And the intermediate statements might appear as.
set SINLAT1 to SIN(LAT)$
set COSTHET to COS(THETA) $
set COSLAT1 to COS(LAT)$
set SINTHET to SI N(THETA) $
set COSBRG to COS(BRG $
set TEMPARG t o SI NLAT1* COSTHET+COSLAT1* SI NTHET* COSBRGS
set LATI TUD to ASI N(TEMPARG) $

Such intermediate statements are used extensively in CM S-2 as a means to provide code
optimization to improve performance. In the MK-2 example, SINLAT1, COSTHET, COSLAT1,
SINTHET, and COSBRG are also used for the computation of longitude. Hence the intermediate
variable would diminate the additional costly computation. In Ada, such a breakdown is
counterproductive as a good optimizing compiler would recognize the opportunity to optimize the
code and perform the optimization automatically.

The dimination of intermediate variables is one of the reasons why the code trandlated by hand is
approximately 50% of the original CMS-2L. These extra intermediate forms contributed to

complicating the translated CCCC. Unfortunately, a translator is not capable of
eiminating the intermediate variables. Translators simply converts existing CMS-2 codeto Ada. A
manual conversion is desirable after the code trandation. Normal text editing tools are quite
satisfactory for this transformation. The last page page M-54 of the Hand reengineered Ada code
identifies the intermediate variables that were not required.

The APL trandator handled intermediate variables in an iteresting way. In CMS-2, intermediate
variables are typically coded as SUB-DDs or LOCRBLLs instead of SYS-DDs. Instead of making
the trandation, the APL trandator generated an error message, thus pointing out a situation where the
intermediate variable should be diminated. For example, the“vrbl COSLAT1 f$” statement above
was flagged asan error inthe Ada “-- $$ ~vrblcoslatlf -- 366" comment. This facilitated the
reengineering of the code, but resulted in an output which would require a manual reengineering.

USE OF STANDARD PACKAGES

One might expect a trandator to take advantage of the standard Ada packages such as
Ada.Numerics and Ada.Calendar. This was not done by any of the trandlators. Yet thisis something
desirable for the reengineering of any application. Both of these packages were used in the manual
trandation.

Both CCCC and APL used a package to facilitate the mapping of CMS-2 constructs to Ada. The
APL package was called Basic_Defns and the CCCC package was called pre_defined. Each package
provided its own math package. At the time the translators were developed, a standard Ada math
package did not exist. Ada95 now has Ada.Numerics.

CCCC uses a pre_defined specification (536 SLOC) and body (769 SLOC) to facilitate the
mapping of CM S-2 constructs to Ada. Both the pre_defined.ads and pre_defined .adb are required by
the CCCC translated Ada code. Only a small portion of this code was actually needed by the CCCC
Ada MK-2 code. However, thetotal SLOC required was 1,759, higher by an order of magnitude than
any other alternative.

These trandator packages might be useful in facilitating a trandation that can compile and
execute, but in the long run should be removed. Any serious code reengineering activity would want
to diminate dependencies on these tranglator supplied packages. The packages hinder code
understanding and may not be portable for all environments.

MEMORY MANAGEMENT

M odern memory management is typically performed either using stack or heap mechanisms.
Stack mechanisms are default for objects and their operations. Stacks can grow or shrink as memory
is required. Heap mechanisms are evoked using Ada access types with operations on these types.
Garbage collection is typically required to reclaim unused heap memory.

CMS-2 uses a fixed memory management with overlays. Depending on the overlay, an different
objects can be mapped to the same location. This primitive memory mechanism creates serious

trandation problems. For example, the CMS-2L statement for own ship longitude:
VRBL SUDVOSLN F P -120. 0*(FKPI 2/ 360.0) $

Could possibly be translated to:

subtype Sudvosln_type is Float;
Sudvosl n : Sudvosl n_Type := -120. 0*fkpi 2/ 360.0 ;

Which might be reengineered to:

subtype Longitude is Float range -180.0 .. + 180.0;
Own_Shi p_Longi tude: Longitude := -120.0*2*PI/ 360. 0;

Had good CM S-2 programming practices been used this translation would be effective.

However, memory was a serious constraint on many CM S-2 systems. As a solution, overlays
were used, thus providing a single memory location with multiple declarations. Unfortunatdly,
CMS-2 programmers also frequently used undesirable side-effects with the overlays. For example,
all assignments to the value of SUDVOSLN should be of the form: “set SUDVOSLN to something$”
- However, if the overlay mapped LONG to the same address, the value of SUDVOSLN could be
easily changed through: “set LONG to somethingelse$.” This side-effect saved the additional
instruction of: “set SUDVOSLN to LONGS.” Hence, top rated CM S-2 programmers prided
themsdves in the ability to optimize CM S-2 code through the use of side-effects. In the mid 1980s,
this practice was viewed as extremely dangerous. Hence this problem is pervasive legacy CM S-2
code. In the MK-2 code used for this comparison which was developed in the late 1980s-early to
1990s, overlays were not used.

APL and TRADA took the approach that side-effects would not be considered in the translation.
Hence users would have to test the translated code for possible side effects, an additional burden on
the developer as many side-effects are subtle and hard to find.

Asthe use of “side-effects” was a common practice, CCCC took the approach of using heap
memory with access types. Hence when an overlay was used, the access types could point to the
same memory address and the side-effect would be captured. To the credit of CCCC, ther trandation
mechanism was the only one to correctly translate and execute the MK -2 example.

Unfortunately the price for this correction is high. The translated code is extremdly difficult to
understand and modify, requires many extra statements, and requires heap memory management.
CCCC trandlated the above CM S-2L statement to:

TYPE SUDVOSLN itemtype IS

RECORD
OVER : FLOAT := (-120.0)*(FKPI 2/360.0);
END RECORD;

TYPE SUDVOSLN item pointer 1S ACCESS SUDVOSLN item type;
TYPE SUDVOSLN one_type IS ARRAY (0..0) OF cnms2_word;
TYPE SUDVOSLN one_poi nter IS ACCESS SUDVOSLN one_type;

FUNCTI ON SUDVOSLN it em address_access | S NEW UNCHECKED CONVERSI ON
(SOURCE=>ADDRESS, TARGET=>SUDVOSLN i t em poi nter);

SUDVOSLN : SUDVOSLN item pointer := SUDVOSLN item address_access
(SUDVOSLN_rnrenor y' ADDRESS) ;

FUNCTI ON SUDVOSLN one_address_access |'S NEW UNCHECKED CONVERSI ON
(SOURCE => ADDRESS, TARGET => SUDVOSLN one_poi nter);

SUDVOSLN one : SUDVOSLN one_poi nter := SUDVOSLN one_address_access
(SUDVOSLN_rnrenor y' ADDRESS) ;

The use of access types seems to complicate code unnecessarily. Also the use of the generic
Unchecked Conversion is not desirable and potentially extremely dangerous. It also explains why
the CCCC trandation is an order of magnitude larger than alternative trandation methods. The use of
access types and Unchecked Conversion are clearly undesirable from a code readability and
understandability perspective. The CCCC codeis not useful to evolve the system should later
changes be desired.

The access type forcing heap memory management is NOT recommended for mission-
critical/safety-critical systems. Heaps are dangerous and impact performance when garbage
collection must be performed to re-acquire unused blocks of memory. Stacks are more easily
controlled as stack e ements are created and destroyed as practical. Further, stacks are safer than
heaps because when a heap is exceeded, the system crashes; when a stack is exceeded, only the task
owning the stack is effected. Code could terminate the task and reinitialize the task. In practice, safe
stack sizes can be engineered for any system where recursion is not used. Safe heaps are almost
impossible to manage/contral.

PERFORMANCE

Performance was not measured for any of the translations. However, some comments can be made
based on the different approaches used by CCCC and APL. Neither the stack nor the heap memory
management scheme has a significant performance advantage. Memory management on the stack is
controlled as the stack is used; memory management on the heap must be performed when the heap
runs out of space or periodically using a process called garbage collection. As noted, the CCCC code
is an order of magnitude larger using the Unchecked Conversion function pervasively. This extra
code does not add a burden for execution. Both the CCCC and APL when compiled without
optimization should execute at about the same speed. As most compilers have fine-tuned

optimizations for stack processing compared to heap processing, the APL translated code would
be expected to execute significantly faster than the CCCC translated code, when both are optimized.

POSITION TO REENGINEER

One motivation to translate code might be to reengineer the code for an evolved system. The APL
Ada Code appears to support this objective. The CCCC trandlated code appears to violate the reasons
for using Ada. It would be significantly easier to reengineer the original CM S-2 code than the
translated CCCC Ada. The use of CCCC translated code could be counterproductive to evolving a
CMS-2 application to an Ada application.

Subsequent sections contain the source code for the MK-2 CMS-2L, the MK -2 Ada produced by
thetrandators, and the MK -2 Ada that was manually trandlated.

ORIGINAL CMS-2L MK-2 FIRE CONTROL SYSTEM

MK2 SYSTEM $
COVMENT THI'S CMS2 SYSTEM CONTAI NS ONE SYS- DD (SYSD) AND
ONE SYS- PROC (SYSP) $

END- HEADS$

SYSD SYS-DD $
FKPI EQUALS 3. 1416 "' constant PI 8
FKPI 2 EQUALS 2* FKPI "' constant 2*Pl "' $

VRBL SUDVTIME F P O '' current systemtine in sec'' $

VRBL ICNX | 32 SP1'' table index '' $

VRBL SUDVOCSXP F P O '' own ship x-position in yards '' $
VRBL SUDVOSYP F P O '' own ship y-position in yards '' $
VRBL SUDVRADL F P 0 '' x-position diff, in yards '' $
VRBL SUDVRAD2 F P O '' y-position diff, in yards '' $

TABLE FTCONDAT V 1 99 §
FI ELD FVEQRADG A 32 S 4 P 6975563.33 ''earth radius in yards''$

END- TABLE FTCONDAT $

TABLE FTCSS V 5 99 "' systemsolution table '' $
FIELD FVTIME F P O '' solution update tine '' $
FIELD FVTIXP F P O '' X position in yards '' $
FIELD FVTIYP F P O '' Y position in yards '' $
FIELD FVTIXV F P 0O '' X velocity in yards/sec '' $
FIELD FVTYY F P O '' Y velocity in yards/sec '' $
END- TABLE FTCSS $
TABLE FTPKSS V 6 99 "' PK systemsolution table '' $
FI ELD FVTXP FPO '' PKed target X position in yards '' $
FI ELD FVTYP FPO '' PKed target Y position in yards '' $
FI ELD FVRNG FPO '' PKed target range in yards '' $
FI ELD FVBRG F PO '' PKed target bearing in radians '' $
FI ELD FVTGTLAT F P O '' PKed target latitude '' $
FIELD FVTGTLON F P 0 '' PKed target longitude '' $

END- TABLE FTPKSS $

VRBL SUDVOSLT F P 32.0*(FKPI2/360.0) ''own ship latitude''$
VRBL SUDVOSLN F P -120.0*(FKPI 2/360.0) ''own ship longitude''$
VRBL SUDVRNG F "' (paraneter) range '' $

VRBL SUDVBRG F "' (paraneter) bearing '' $

VRBL SUDVLAT1 F "' (paraneter) input latitude '' $

VRBL SUDVLAT2 F "' (paraneter) output latitude'' $

VRBL SUDVLONL F "' (paraneter) input longitude '' $

VRBL SUDVLON2 F "' (paraneter) output longitude '' $

VRBL (VRAD1, VRAD2) F '' (paraneter) two ATAN argunments '' $
END- SYS- DD SYSD $
SYSP SYS- PRCC $

FUNCTI ON SUDPATAN (VRADL, VRAD2) F $
SUB- DD $
VRBL VATAN F $
END- SUB- DD $
if VRADL LT 0.00001 AND VRAD2 LT 0.00001 THEN
SET VATAN TO 0.0 $
ELSE
SET VATAN TO ATAN2(VRADL, VRAD2) $
RETURN (VATAN) $
END- FUNCTI ON SUDPATAN $

(EXTDEF) PROCEDURE SUDPKFCS $

COMMENT $
COMMENT

COMMENT Segnent : FCS $

COMMENT CSCl Nane: TMAB $

COMMENT TLCSC: SUD $

COMMENT LLCSC: SUDLTD $

COMMENT UNIT: SUDPKFCS $

COMMENT Part Nunmber PRG528777 $

COMMENT O assification: UNCLASSI FI ED $

COMMENT Company_I D Rayt heon, CAGE Code 49956 $
COMMENT 8

COMMENT - oo oo m oo oo oo $
COMMENT 8

COMMENT Library Nane MK2ECP6: [SRC. FC. TMAB. SUD. SRC] $
COMMENT El enent Nane SUDPKFCS. SRC $

COMMENT Revi si on Nunber 1 3

COMMENT Revision Date, Tine 25- NOV-1992 10:57 $

COMMENT Current Date, Time 3- MAR-1995 16:44 $

COMMENT 8

COMMENT - oo oo m oo oo oo oo
COMMENT 8

COMMENT Author: Mark Damiani $

COMMENT 8

COMMENT Overview. This purpose of this procedure is to perform$
COMVENT the following for all FCS tactical/training $
COMVENT targets not including OTH targets: $
COMVENT 1) Conpute PKed Target X Position. $
COMVENT 2) Conpute PKed Target Y Position. $
COMMVENT 3) Conpute PKed Target Range $
COMMVENT 4) Conpute PKed Target Bearing $
COMVENT 5) Conmpute PKed Target Latitude and Longitude $
COMVENT by calling the SUDPRBLL system compn $
COMVENT routine. $
COMMVENT $

COWENT Effects: $

COMMVENT $

COWENT Requirenents Trace: $

COMMVENT $

COMMENT Algorithm $

COMMENT 8

COMVENT Notes: This procedure will be called during a SUD Tinme $
COMVENT Dependent entrance. $
COMMVENT $

COMMENT Exceptions Raised: $

COMMVENT $

COMMVENT $
sudl ocl sub-dd ""Unit Local Data'' $

vrbl SUDVDTME f ''Target Solution PK Delta Tinme''$
VRBL TGTLAT F "' PKed Target Latitude ''$
vrbl TGTLONG f "' PKed Target Longitude''$

end- sub-dd sudl ocl ""End Unit Local Data''$

COMVENT:

©

- Conpute FCS Position Kept Target X and Y Positions

©

COMMENT Set Target Solution Delta Time to current System Tine
m nus System Sol ution table Solution Update Tinme for
current ICN. $

set SUDVDTME to SUDVTI ME - FTCSS(|CNX, FVTI ME) $

COMMENT Conpute FCS PK Target X Position. $

set FTPKSS(I|CNX, FVTXP) to FTCSS(|CNX, FVTXP) +

(FTCSS(| CNX, FVTXV) * SUDVDTME) $

COMMENT Conpute FCS PK Target Y Position. $

set FTPKSS(1 CNX, FVTYP) to FTCSS(ICNX, FVTYP) +
(FTCSS(1 CNX, FVTYV) * SUDVDTME) $

COMVENT

- Conmpute FCS Position Kept Target Range.

set FTPKSS(1 CNX, FVRNG) to SQRT((FTPKSS(| CNX, FVTXP) - SUDVOSXP) *
(FTPKSS(| CNX, FVTXP) - SUDVOSXP) +
(FTPKSS(| CNX, FVTYP) - SUDVOSYP) *
(FTPKSS(1 CNX, FVTYP) - SUDVOSYP)) $

i f FTPKSS(1 CNX, FVRNG) gt 999999 then
set FTPKSS(ICNX, FVRNG) to 999999% ''Clip target range to MAX''

COMVENT

- Conmpute FCS Position Kept Target Bearing.

©

©*

set SUDVRADL to FTPKSS(| CNX, FVTXP) - SUDVOSXP$
set SUDVRAD2 to FTPKSS(I|CNX, FVTYP) - SUDVOSYP$

set FTPKSS(1CNX, FVBRG) to SUDPATAN(SUDVRAD1, SUDVRAD2) $

COMVENT

PKed Target Latitude and PKed Target Longitude shall be
conputed using the Range, Azinuth to Latitude, Longitude
(SUDPRBLL) common conversion function.

I nput paraneters shall include current Owm Ship Latitude
and Om Ship Longitude, PKed Target Range, and PKed Tar get
Beari ng.

Qut put paraneters shall be PKed Target Latitude and PKed
Tar get Longitude.

*»

set SUDVRNG to FTPKSS(|CNX, FVRNG $ ''convrt RNG to a 43 Float"''
set SUDVBRG to FTPKSS(|CNX, FVBRG $ ''convrt BRGto a 43 Float"''

SUDPRBLL i nput SUDVRNG, SUDVBRG, SUDVOSLT, SUDVOSLN
OQUTPUT TGTLAT, TGTLONGS

COMMENT Save PKed Target Latitude in PK System Solution table.$
set FTPKSS(|CNX, FVTGTLAT) to TGTLAT $
COMMENT Save PKed Target Longitude in PK System Solution table.$

set FTPKSS(1CNX, FVTGTLON) to TGTLONG $

end- proc SUDPKFCS $

(EXTDEF) PROCEDURE SUDPRBLL i nput SUDVRNG, SUDVBRG, SUDVLAT1, SUDVLONL
out put SUDVLAT2, SUDVLON2 $

COMMVENT $
COWENT $

COWENT Segnent : FCS $

COWENT CSClI Nane: TMAB $

COWMENT TLCSC: SUD $

COMMVENT LLCSC: SUDLTD $

COMVENT UNI T: SUDPRBLL $

COMVENT Part Nunber PRG528777 $

COMVENT Cl assification: UNCLASSI FI ED $

COMMENT Company_I D Rayt heon, CAGE Code 49956 $

COWENT $

(010 1717 S\ B e e
COWENT $

COMVENT Li brary Name MK2ECP6: [SRC. FC. TMAB. SUD. SRC] $
COMVENT El ement Nane SUDPRBLL. SRC $

COMVENT Revi si on Nunber 2%

COMVENT Revi sion Date, Tine 27- APR-1993 16:28 $

COWENT Current Date, Tine 3-MAR-1995 16:44 $

COWENT $

(610 1717 S\ e
COWENT %

COMMENT Aut hor: JimPryor (JRP), Bill Croasdal e (WC)

$
COMMENT Overvi ew $
COMMENT The Range/Bearing to Lat/Lon unit will $
COMMENT calculate the latitude and | ongitude coordinates of a $
COMVENT position represented by a range, bearing fromthe input$

COMMENT | atitude/longitude position. $
COMMVENT $

COWENT Effects: $

COMMVENT $

COMMENT Requirenents Trace: PROCESS NAV $

COMMVENT $

COMMENT Al gorithm $

COMMVENT theta = RRE $

COMVENT Target Latitude = $

COMVENT Arcsin[sin(P0) * cos(theta) + $

COMVENT cos(P0) * sint(theta) * cos(By)] $
COMMVENT $

COMVENT Target Longitude = $

COMVENT arctan2[sin(theta) * sin(By), $

COMVENT cos(P0) * cos(theta) - $

COMVENT sin(P0) * sin(theta) * cos(By)] + U0 $
COMMVENT $

COMVENT R Range to target frominput Lat/Lon(yds) $

COMVENT By = Bearing to target frominput Lat/Lon $
COMVENT PO = input Latitude $

COMVENT U0 = input Longitude $

COMVENT RE = Radius of the earth(from FTCONDAT) $

COMMVENT $
COWENT Not es: $

COMVENT Al'l angl es(input/output) in floating point Radians, $
COMVENT and all ranges in floating point yards. $

COMMVENT $

COMWENT Exceptions Raised: $

COMMVENT $

COMMVENT $

LOCRBLL sub-dd $

vrbl RBLLTHET f "‘interimval ue (R REO s
vrbl TEMPARG f "‘interimvalue for arcsin S
vrbl COSTHET f $ ''Cosine R Re''
virbl SINTHET f $ ''Sin R/ Re''

vrbl COSLAT1 f $ ''Cosine LAT1"'
vrbl SINLATL f $ ''Sin LAT1" '
vrbl COSBRG f $ ''Cosine BRG''
vrbl SINBRG f $ ''Sin BRG "'

end-sub-dd LOCRBLL $

Conpute Theta = Target Range / Radius of Earth ''

Save sone CPU - Preconpute SIN COS terns '

set COSTHET to COS(RBLLTHET)$ '' Cosine R/ Re''
set SINTHET to SIN(RBLLTHET)$ ''Sin R/ Re""’

set COSLAT1 to COS(SUDVLAT1)$ '' Cosine LAT1''
set SINLAT1 to SIN(SUDVLAT1)$ ''Sin LAT1" '

set COSBRG to COS(SUDVBRG) $ "' Cosine BRG'
set SINBRG to SI N(SUDVBRG) $ '"Sin BRG '

set TEMPARG to SI NLAT1 * COSTHET + COSLAT1 * SINTHET * COSBRG $
set SUDVLAT2 to ASI N(TEMPARG) $

set SUDVLON2 to SUDPATAN(SI NTHET * SI NBRG,
COSLAT1 COSTHET -
SI NLAT1 * SINTHET * COSBRG) + SUDVLONL $

*

if SUDVLON2 gt FKPl then set SUDVLON2 to SUDVLON2 - FKPI2$
"*Bound LON to (-Pl,PI)""

END- PROC SUDPRBLL$

END- SYS- PROC SYSP $
END- SYSTEM MK2 $

ADA TRANLATION USING APL TRANLATOR

wi th Basi c_Def ns;
use Basi c_Def ns;

package M2 is

FKPI . constant FLOAT = 3.1416 ;
FKPI 2 : constant FLOAT =2 * fkpi ;
sudvti nme : FLOAT 1= 0.0;

i cnx ;| NTEGERS32 1= 1;
sudvosxp : FLOAT 1= 0.0;
sudvosyp : FLOAT = 0.0;
sudvradl . FLOAT = 0.0;
sudvrad2 . FLOAT = 0.0;

type FTCONDAT_REC is record
fveqgradg : FLOAT;
end record,

type FTCONDAT_TYPE is array (|NTEGER range <>) of FTCONDAT_REC;
f t condat : FTCONDAT_TYPE (0 .. 98) :=

(0=> (fveqradg=>6975563. 33),

1 .. 98=> (fveqradg=>0.0));

type FTCSS_REC is record

fvtime : FLOAT;
fvtxp : FLOAT;
fvtyp : FLOAT;
fvtxv : FLOAT;
fvtyv : FLOAT;

end record;

type FTCSS_TYPE is array (I NTEGER range <>) of FTCSS_REC;

ftcss : FTCSS_TYPE (0 .. 98) :=
(0 .. 98 => (fvtine=>0.0, fvtxp=>0.0, fvtyp=>0.0,
fvtxv=>0.0, fvtyv=>0.0));

type FTPKSS_REC is record

fvtxp : FLOAT;
fvtyp : FLOAT;
fvrng : FLOAT;
fvbrg : FLOAT;
fvtgtlat : FLOAT;
fvtgtlon : FLOAT;

end record;

type FTPKSS_TYPE is array (I NTEGER range <>) of FTPKSS_REC,

ft pkss : FTPKSS_TYPE (0 .. 98) :=
(0 .. 98 => (fvtxp=>0.0, fvtyp=>0.0, fvrng=>0.0,
fvbrg=>0.0, fvtgtlat=>0.0, fvtgtlon=>0.0));

sudvosl t . FLOAT 1= 32.0;

sudvosl n . FLOAT = -120. 0;

sudvrng : FLOAT;

sudvbrg : FLOAT;

sudvl at 1 . FLOAT;

sudvl at 2 . FLOAT;

sudvl onl . FLOAT;

sudvl on2 . FLOAT;

vradl . FLOAT;

vrad2 . FLOAT;

-- SUDPKFCS

-- Descri ption:

-- SUDPRBLL

procedure SUDPRBLL (sudvrng : in FLOAT;
sudvbrg : in FLOAT;
sudvlatl : in FLOAT;

sudvlonl : in FLOAT,;
sudvl at2 : out FLOAT,
sudvl on2 : out FLOAT);

end Mk2; wi th Basic_Def ns;

use Basi c_Def ns;
wi t h Mat hpac;

package body M2 is

-- SUDPATAN

-- Descri ption:

function SUDPATAN (vradl : in FLOAT;

vrad2 : in FLOAT) return FLOAT;
-- MK2 SYSTEM ; -- 1
-- END- HEAD ; -- 4
-- SYSD SYS-DD ; -- 5
-- END- SYS-DD SYSD ; -- 49
-- SYSP SYS- PRCC ; -- 51
-- @@ could not translate:
-- @@ dd
--@al
function SUDPATAN(vradl : in FLOAT;
vrad2 : in FLOAT) return FLOAT is

begin --

SUB - ~dd ; -- 54
-- @@ could not translate:
-- @@ vr bl vat anf
-- @3

-- $$ ~vrblvatanf ; -- 55
-- $$ END - SUB - DD ; -- 56
-- @@ could not translate:
-- @@ vat an
--@a7
if vradl < 0.00001 and then vrad2 < 0.00001 then -- 57

~vatan := 0.0 ; - - 58
-- @@ could not translate:
-- @@ vat an
-- @@ could not translate:
-- @@ at an2
-- @0
el se -- 59

~vatan := ~atan2(vradl, vrad2) ; -- 60
end if ; --
-- @@ could not translate:
- - @@ vat an
--@@3
return (~vatan) ; -- 61
end SUDPATAN ; -- 62
-- @@ could not translate:
-- @@ sudl oclsub
-- @@ could not translate:
-- @@ dd
- - @0
procedure SUDPKFCS is -- 64
begin --

-- $$ ~sudl oclsub - ~dd ; -- 159
-- @@ could not translate:
-- @@ vr bl sudvdt nef
- - @@B2

-- $$ ~vrbl sudvdt nef ; -- 162
-- @@ could not translate:
-- @@ vrbltgtlatf
-- aB4

-- $$ ~vrbltgtlatf ; -- 163

-- @@ could not translate:
-- @@ vr bl t gt | ongf

- - @m6

-- $$ ~vrbltgtlongf ; -- 164
-- @@ could not translate:
-- @@ end
-- @@ could not translate:
-- @@ sub
-- @@ could not translate:
-- @@ ddsudl ocl
-- @®B8
-- $$ ~end - ~sub - ~ddsudlocl ; -- 166
-- @@ could not translate:
-- @@ sudvdt ne
-- @0
~sudvdtme := sudvtine - ftcss(icnx).fvtine ; -- 178
--@®3: could not typecast r.h.s. of assignment.
-- @@ Unknown nane.
-- @@ could not translate:
-- @@ sudvdt ne
-- a4
ftpkss(icnx).fvtxp := ftess(icnx).fvtxp + -- 182
(ftess(icnx).fvtxv * ~sudvdtme) ; -- 183
--@@7: could not typecast r.h.s. of assignment.
-- @@ Unknown nane.
-- @@ could not translate:
-- @@ sudvdt ne
-- a8
ftpkss(icnx).fvtyp := ftess(icnx).fvtyp + -- 188
(ftess(icnx).fvtyv * ~sudvdtme) ; -- 189
ftpkss(icnx).fvrng := Mathpac. Sqrt ((ftpkss(icnx).fvtxp -
(ftpkss(icnx).fvtxp - sudvosxp) + -- 198
(ftpkss(icnx).fvtyp - sudvosyp) * -- 199
(ftpkss(icnx).fvtyp - sudvosyp)) ; -- 200
if ftpkss(icnx).fvrng > 999999 then -- 203
ftpkss(icnx).fvrng := 999999.0 ; -- 204
end if --
sudvradl : = ftpkss(icnx).fvtxp - sudvosxp ; -- 210
sudvrad2 := ftpkss(icnx).fvtyp - sudvosyp ; -- 211
ftpkss(icnx).fvbrg : = SUDPATAN (sudvradl , sudvrad2) ; --
sudvrng : = ftpkss(icnx).fvrng ; -- 228
sudvbrg : = ftpkss(icnx).fvbrg ; -- 229

--@®3 could not typecast paraneter |ist.

- - @@ Unknown nane.
-- @@ could not translate:
-- @@ tgtlat
-- @@ could not translate:
-- @@ tgtlong
- - G4
SUDPRBLL (sudvrng , sudvbrg , sudvoslt , sudvosln , ~tgtlat
~tgtlong) ; -- 232
--@®6: could not typecast r.h.s. of assignnent.
-- @@ Unknown nane.
-- @@ could not translate:
-- @@ tgtlat
-- @7
ftpkss(icnx).fvtgtlat := ~tgtlat ; -- 236
--@®9: could not typecast r.h.s. of assignment.
-- @@ Unknown nane.
-- @@ could not translate:
-- @@ tgtlong
--@@o
ftpkss(icnx).fvtgtlon := ~tgtlong ; -- 241
end SUDPKFCS ; -- 244

sudvosxp)

213

i

procedure SUDPRBLL(sudvrng : in FLOAT;

sudvbrg : in FLOAT;
sudvlatl : in FLOAT;
sudvlonl : in FLOAT;
sudvl at2 : out FLOAT;
sudvl on2 : out FLOAT) is

sudvl on2_t : FLOAT ; --
-- @@ could not translate:
-- @@ locrbllsub
-- @@ could not translate:
-- @@ dd
-- a®B4

*

-- $$ ~locrbllsub - ~dd ;
-- @@ could not translate
-- @@ vrblrbllthetf
-- @®B6

-- $$ ~vrblrbllthetf
-- @@ could not translate
-- @@ vr bl t enpar gf
-- @a®B8

-- $$ ~vrbl tenpargf
-- @@ could not translate
-- @@ vr bl cost het f
-- @0

-- $$ ~vrblcosthetf
-- @@ could not translate
-- @@ vr bl sint het f
-- @®2

-- $$ ~vrblsinthetf
-- @@ could not translate
-- @@ vr bl cosl at 1f
-- a®4

-- $%$ ~vrbl cosl at 1f
-- @@ could not translate
-- @@ vr bl si nl at 1f
-- @®6

-- $$ ~vrblsinlat 1f
- - @@ could not translate
-- @@ vr bl cosbr gf
-- @®8

-- $$ ~vrbl cosbr gf
-- @@ could not translate
-- @@ vr bl si nbr gf
- - @aL00

-- $$ ~vrbl sinbrgf
-- @@ could not translate
- - @@ end
-- @@ could not translate
-- @@ sub
-- @@ could not translate
-- @@ ddl ocr bl |
--@aL02

-- $$ ~end - ~sub - ~ddl ocrbl
-- @@ could not translate
-- @@ rbllthet
-- @04

~rbllthet := sudvrng / ftcondat(0).fveqradg
--@dl06 could not typecast paraneter |ist.
-- @@ Unknown nane.

-- @@ could not translate
- - @@ cost het

- - @@ could not translate
- - @@ rbllthet

-- @07

~costhet := Mathpac.Cos (~rbllthet)
--@dl09 could not typecast paraneter |ist.
-- @@ Unknown nane.

-- @@ could not translate
-- @@ si nt het

-- @@ could not translate
-- @@ rbllthet

--@aL10

~sinthet := Mathpac.Sin (~rbllthet)
-- @@ could not translate
-- @@ coslatl
--@aL12

~coslatl := Mathpac. Cos (sudvlatl)

--@
--@@
--@all4

could not translate
sinlatl

~sinlatl := Mathpac.Sin (sudvliatl)

--@@
--@@
--@dl16

could not translate
cosbrg

~cosbrg : = Mat hpac. Cos (sudvbrg)

--@
--@

could not translate
sinbrg

248
358

361

362

364

365

366

367

368

369

371

380

386

387

389

390

392

--@al8

~sinbrg := Mathpac.Sin (sudvbrg) ; -- 393
-- @@ could not translate:
-- @@ tenmparg
-- @@ could not translate:
-- @@ sinlatl
-- @@ could not translate:
-- @@ cost het
-- @@ could not translate:
-- @@ coslatl
-- @@ could not translate:
-- @@ si nt het
-- @@ could not translate:
-- @@ cosbrg
--@aL20
~tenparg := ~sinlatl * ~costhet + ~coslatl * ~sinthet * ~cosbrg ;

--@d22: could not typecast r.h.s. of assignnent.
Unknown nane.
--@d23 could not typecast paraneter |ist.

8

-- @@ Unknown nane.
-- @@ could not translate:
-- @ tenparg
--@a24
sudvl at2 : = Mathpac. Asin (~tenparg) ; -- 400

--@d28: could not typecast r.h.s. of assignnent.
-- @@ Unknown nane.

coul d not typecast paraneter I|ist.
Unknown nane.

could not translate:

si nt het

could not translate:

sinbrg

could not translate:

coslatl

could not translate:

cost het

could not translate:

sinlatl

could not translate:

si nt het

could not translate:

cosbrg

88@88@88@888888@

--@aL30
sudvl on2_t := SUDPATAN (~sinthet * ~sinbrg , -- 405
~coslatl * ~costhet - -- 406
~sinlatl * ~sinthet * ~cosbrg) + sudvlonl ; -- 407
if sudvlon2 > fkpi then -- 409
sudvl on2_t := sudvlon2_t - fkpi2 ; --
end if ; --
sudvl on2 : = sudvlon2_t ; -- 412
end SUDPRBLL ; --

-- END- SYS- PROC SYSP ; -- 414
end M2 ; -- 415

APL TRANSLATOR COMMON PACKAGES

with System
wi t h UNCHECKED_CONVERSI ON;
package Basic_Defns is

-- Unsigned | NTEGER types.

subtype INTEGERUL is | NTEGER range 0 .. 1;
subtype I NTEGERU2 is | NTEGER range 0 .. 3;
subtype INTEGERU3 is | NTEGER range 0 .. 7;
subtype | NTEGERU is | NTEGER range 0 .. 15;
subtype I NTEGERUS is | NTEGER range 0 .. 31;
subtype I NTEGERU6 is | NTEGER range 0 .. 63;
subtype I NTEGERU7 is | NTEGER range 0 .. 127;
subtype INTEGERU8 is | NTEGER range O .. 255;
subtype I NTEGERUI is | NTEGER range 0 .. 511;
subtype I NTEGERU10 is | NTEGER range 0 .. 1023;

subtype | NTEGERUL1

is INTEGER range 0 .. 2047,

subtype I NTEGERU12 is | NTEGER range 0 .. 4095;

subtype | NTEGERUL3 i

%]

I NTEGER range 0 .. 8191,

subtype | NTEGERU14 i

%]

I NTEGER range 0 .. 16_383;

%]

subtype I NTEGERU15 is | NTEGER range 0 .. 32_767;

subt ype | NTEGERUL6 i

%]

I NTEGER range 0 .. 65_535;

%]

subtype I NTEGERU17 is | NTEGER range 0 .. 131 _071;

subtype | NTEGERULS i

%]

INTEGER range 0 .. 262_143;

subtype | NTEGERUL9 i

2]

I NTEGER range 0 .. 524_287,

2]

subtype | NTEGERU20 is | NTEGER range O .. 1_048_575;

subtype | NTEGERU21 i

]

I NTEGER range 0 .. 2_097_151;

]

subtype | NTEGERU22 is | NTEGER range O .. 4_194 303;

subtype | NTEGERU23 i

]

I NTEGER range O .. 8_388_608;

subtype | NTEGERU24 i

%]

I NTEGER range O .. 16_777_216;

%]

subtype | NTEGERU25 is | NTEGER range O .. 33_554_431;

subt ype | NTEGERU26 i

%]

I NTEGER range 0O .. 67_108_863;

subtype | NTEGERU27 i

%]

I NTEGER range 0 .. 134 217 728;

subtype | NTEGERU28 i

%]

I NTEGER range O .. 268_435_456;

subtype | NTEGERU29 i

%]

| NTEGER range O .. 536_870_912;

%]

subtype | NTEGERU30 is | NTEGER range 0 .. 1 _073_741 824;

subtype | NTEGERU31 i

%]

INTEGER range O .. 2_147 483_647;

M -19

-- | NTEGERU32 shoul d be range O .
-- since Ada reserves the sign bit for its own use, and
-- integers are a maxi num of 4 bytes on the Verdi x

have the same definition

-- conpiler,

-- as | NTEGERU31.

subtype I NTEGERU32 is | NTEGER range O .

| NTEGERU32 wi | |

-- Signed | NTEGER types

subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype
subt ype

subt ype

| NTEGERS2

| NTEGERS3

| NTEGERS4

| NTEGERS5

| NTEGERS6

| NTEGERS7

| NTEGERSS

| NTEGERS9

I NTEGERS10

| NTEGERS11

I NTEGERS12

I NTEGERS13

| NTEGERS14

I NTEGERS15

| NTEGERS16

I NTEGERS17

| NTEGERS18

I NTEGERS19

I NTEGERS20

I NTEGERS21

| NTEGERS22

I NTEGERS23

| NTEGERS24

I NTEGERS25

| NTEGERS26

I NTEGERS27

| NTEGERS28

I NTEGERS29

I NTEGERS30

I NTEGERS31

| NTEGERS32

s | NTEGER r ange
s | NTEGER r ange
s | NTEGER range
s | NTEGER r ange
s | NTEGER range
s | NTEGER r ange
s | NTEGER r ange
s | NTEGER r ange

4 294 967_296, but

-1 .. 1

-3 .. 3

-7 .. T

-15 .. 15;
-31 .. 31,
-63 .. 63,
-127 .. 127
-255 .. 255;

is INTEGER range -511 .. 511;

is

S

]

]

]

(7]

]

]

]

]

2]

2]

2]

2]

%]

%]

%]

%]

%]

%]

%]

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTECER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

I NTEGER

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

range

-1023 .. 1028,
-2047 .. 2047,
-4095 .. 4095;

-8191 .. 8191,

2_147_483_647;

-16_383 .. 16_383;

-32_767 .. 32_767;

-65_535 .. 65_535;

-131 071 .. 13
-262_143 .. 26
-524 287 .. 52
-1_048_575 ..
-2.097_151 ..
-4_194_303 ..
-8_388_608 .
-16_777_215 ..
-33 554 431 ..

-67_108_863 ..

-134 217 727 ..
-268_435_455 .
-536_870_911 .
-1_073_741_823 .

-2_147_483 647 .

1.071;
2 143;

4 287

1_048_575

2 097_151

4 194 303
8_388_608
16_777_215
33_554_431
67_108_863;

134 217 727
268_435_455;
536_870_911;
1_073_741_823

2_147_483_647

-- | NTEGERS64 shoul d be range -(2**64)+1 .. (2**64)-1, but

-- integers are a maxi num of 4 bytes on the Verdix

-- conpiler, so INTEGERS64 wi Il have the sane definition

-- as | NTEGERS32.

subtype | NTEGERS64 is | NTEGER range -2_147_483_647 .. 2_147_483_647;

-- Fixed point definitions.
-- type FIXED is delta (1/2_147_483_647);

-- Used for tables with no storage type.

type WORD_ARRAY is array (I NTEGER range <>) of | NTEGERS32;

-- Used for simulating INVALID option on P-SWTCH calls.

I NDEX_OUT_OF_RANGE ;. exception;

-- Sone useful conversion functions to take care of
-- CORAD s.

function INT_to_ADDR is new
UNCHECKED_CONVERSI ON (| NTEGER, System ADDRESS);

function ADDR to_INT is new
UNCHECKED_CONVERSI ON (Syst em ADDRESS, | NTEGER);

-- Some useful function_s to elimnate the need for

-- as many type conversions.

function "+" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;
function "+" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;
function "-" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;
function "-" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;
function "*" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;
function "*" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;
function "/" (LEFT: in INTEGER; RIGHT: in FLOAT) return FLOAT;
function "/" (LEFT: in FLOAT; RIGHT: in INTEGER) return FLOAT;
function "<" (LEFT: in INTEGER; RIGHT: in FLOAT) return BOOLEAN,
function "<" (LEFT: in FLOAT; RIGHT: in |INTEGER) return BOOLEAN;

function ">" (LEFT: in INTEGER, RIGHT: in FLOAT) return BOOLEAN,

function ">" (LEFT: in FLOAT; RIGHT: in |INTEGER) return BOOLEAN,

function "<=" (LEFT: in INTEGER, RIGHT: in FLOAT) return BOOLEAN;

function "<=" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;
function ">=" (LEFT: in INTEGER, RIGHT: in FLOAT) return BOOLEAN;
function ">=" (LEFT: in FLOAT; RIGHT: in INTEGER) return BOOLEAN;
pragma inline ("+", "-", "xToov[roomgtoonst o taztl Mty

generic

type FIXED is delta <>;
package FI XED_CONVERSI ON i s
function "+" (LEFT: in FIXED;, RIGHT: in FLOAT) return FLOAT;

M -21

function "+" (LEFT: in FLOAT; RIGHT: in FIXED) return FLOAT;
function "-" (LEFT: in FIXED;, R GHT: in FLOAT) return FLOAT;
function "-" (LEFT: in FLOAT; RIGHT: in FIXED) return FLOAT;
function "*" (LEFT: in FIXED;, RIGHT: in FLOAT) return FLOAT;
function "*" (LEFT: in FLOAT; RIGHT: in FIXED) return FLOAT;
function "/" (LEFT: in FIXED;, R GHT: in FLOAT) return FLQA\T;
function "/" (LEFT: in FLOAT; RIGHT: in FIXED) return FLOAT;
function "<" (LEFT: in FIXED, RI GHT: in FLOAT) return BOOLEAN;
function "<" (LEFT: in FLOAT; RIGHT: in FIXED) return BOOLEAN;
function ">" (LEFT: in FIXED;, R GHT: in FLOAT) return BOQEAN;
function ">" (LEFT: in FLOAT; RIGHT: in FIXED) return BOOLEAN;

function "<=" (LEFT: in FIXED, RIGHT: in FLOAT) return BOOLEAN,

function "<=" (LEFT: in FLOAT; RIGHT: in FIXED) return BOOLEAN,
function ">=" (LEFT: in FIXED, RIGHT: in FLOAT) return BOOLEAN,
function ">=" (LEFT: in FLOAT; RIGHT: in FIXED) return BOOLEAN,

function "+" (LEFT: in INTEGER, RIGHT: in FIXED) return FI XED,
function "+" (LEFT: in FIXED, RIGHT: in |NTEGER) return FI XED,
function "-" (LEFT: in INTEGER, RIGHT: in FIXED) return FI XED,
function "-" (LEFT: in FIXED, RIGHT: in |NTEGER) return FI XED,
function "*" (LEFT: in INTEGER, RIGHT: in FIXED) return FI XED,
function "*" (LEFT: in FIXED, RIGHT: in |NTEGER) return FI XED,
function "/" (LEFT: in INTEGER, RIGHT: in FI XED) return Fl XED;
function "/" (LEFT: in FIXED, RIGHT: in |INTEGER) return FI XED,
function "<" (LEFT: in INTEGER, RIGHT: in FIXED) return BOOLEAN,
function "<" (LEFT: in FIXED, RIGHT: in |INTEGER) return BOOLEAN,
function ">" (LEFT: in INTEGER, RIGHT: in FIXED) return BOOLEAN,
function ">" (LEFT: in FIXED, RIGHT: in | NTEGER) return BOOLEAN,

function "<=" (LEFT: in INTEGER, RIGHT: in FIXED) return BOOLEAN;
function "<=" (LEFT: in FIXED, RIGHT: in INTEGER) return BOOLEAN;

function ">=" (LEFT: in INTEGER, RIGHT: in FIXED) return BOOLEAN;
function ">=" (LEFT: in FIXED; RIGHT: in |INTEGER) return BOOLEAN;
pragma inline ("+", "-", "xv,ov/roor<toUsStot<=t >V,

end FI XED_CONVERSI ON,

end Basi c_Def ns;

ADA TRANSLATION USING CCCC TRANSLATOR

MK2
W TH cns2_t o_ada_predefined ;
USE cns2_t o_ada_predefined ;
W TH UNCHECKED_ CONVERSI ON ;

W TH SYSTEM ;
USE SYSTEM ;
PACKAGE MK2 | S
- - SYSTEM
PACKAGE nenory_use | S
FKPI : CONSTANT := 3.1416 ;
FKPI 2 : CONSTANT := 2*FKPI ;
SUDVTI ME_nenory : FLOAT = 0.0 ;
I CNX_nenory : INTEGER :=1 ;
SUDVOSXP_nenory : FLOAT = 0.0 ;
SUDVOSYP_nenory : FLOAT = 0.0 ;
SUDVRAD1_nenory : FLOAT = 0.0 ;
SUDVRAD2_nenory : FLOAT := 0.0 ;
FTCONDAT _nmenory : ARRAY (0..98 , 0..0) OF cns2_word ;

FTCSS nmenory : ARRAY (0..98 , 0..4) OF cns2_word ;
FTPKSS menory : ARRAY (0..98 , 0..5) OF cns2_word ;
SUDVOSLT _nenory : FLOAT 32. 0*(FKPI 2/ 360. 0) ;
SUDVOSLN _nenory : FLOAT (-120.0)*(FKPI 2/ 360.0) ;
SUDVRNG nenory : FLOAT ;
SUDVBRG nenory : FLOAT ;
SUDVLAT1_nenory : FLOAT ;
SUDVLAT2_nenory : FLOAT ;
SUDVLON1_rnenory : FLOAT ;
SUDVLON2_nenory : FLOAT
VRADL_nenory : FLOAT ;
VRADZ2_nenory : FLOAT ;
VATAN nenory : FLOAT ;
SUDVDTME_nenory : FLOAT
TGTLAT_nenory : FLOAT ;
TGTLONG nenory : FLOAT ;
RBLLTHET rrermry : FLOAT ;
TEMPARG_nenory FLOAT ;
OCBTHET_rrerrory . FLOAT ;
SI NTHET _nmenory : FLOAT ;
COSLAT1_menory : FLOAT
SI NLAT1_menory : FLOAT ;
COSBRG_nenory : FLOAT
SINBRG nenory : FLOAT ;
exit_index : | NTEGER ;
END nmenory_use ;
-- THI'S CMS2 SYSTEM CONTAI NS ONE SYS-DD (SYSD) AND
-- ONE SYS- PROC (SYSP)
USE nmenory_use ;
PACKAGE SYSD | S
--SYS-DD
TYPE SUDVTI ME_itemtype IS
RECORD
OVER : FLOAT := 0.0 ;
-- current systemtinme in sec
END RECORD;

TYPE SUDVTI ME_item pointer IS ACCESS SUDVTI ME_item type ;
TYPE SUDVTI ME_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVTI ME_one_poi nter |I'S ACCESS SUDVTI ME_one_type ;
FUNCTI ON SUDVTI ME_i t em addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVTI ME_i t em poi nt er)

SUDVTI ME : SUDVTI ME_i t em poi nter: =SUDVTI ME_i t em addr ess_access(
SUDVTI ME_nenory' ADDRESS) ;
FUNCTI ON SUDVTI ME_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVT| ME_one_poi nter) ;

SUDVTI ME_one : SUDVTI ME_one_poi nt er : =SUDVTI ME_one_addr ess_access(

SUDVTI ME_nenor y' ADDRESS) ;
TYPE ICNX_itemtype IS
RECORD
OVER : INTEGER :=1 ;
-- table index
END RECORD;

TYPE I CNX_item pointer 1S ACCESS | CNX_item type ;
TYPE | CNX_one_type IS ARRAY (0..0) OF cms2_word ;
TYPE | CNX_one_pointer IS ACCESS | CNX_one_type ;
FUNCTI ON | CNX_i t em addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>I CNX_i t em poi nter) ;
ICNX : |1 CNX_item pointer:=ICNX_item address_access(| CNX_nenory' ADDRESS) ;

FUNCTI ON | CNX_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>| CNX_one_poi nter) ;
I CNX_one : | CNX_one_poi nter: =l CNX_one_address_access(| CNX_nenor y' ADDRESS)

TYPE SUDVOSXP_item type IS

RECORD

OVER : FLOAT :=0.0 ;
-- own ship x-position in yards
END RECORD;

TYPE SUDVOSXP_item pointer IS ACCESS SUDVOSXP_item type ;
TYPE SUDVOSXP_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVOSXP_one_poi nter |'S ACCESS SUDVOSXP_one_type ;
FUNCTI ON SUDVOSXP_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSXP_i t em poi nt er)

SUDVOSXP : SUDVOSXP_it em poi nt er: =SUDVOSXP_i t em addr ess_access(
SUDVOSXP_nenory' ADDRESS) ;
FUNCTI ON SUDVOSXP_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSXP_one_poi nter) ;

SUDVOSXP_one : SUDVOSXP_one_poi nt er : =SUDVOSXP_one_addr ess_access(
SUDVOSXP_nenory' ADDRESS) ;
TYPE SUDVOSYP_itemtype IS

RECORD

OVER : FLOAT :=0.0 ;
-- own ship y-position in yards
END RECORD;

TYPE SUDVOSYP_item pointer IS ACCESS SUDVOSYP_item type ;
TYPE SUDVOSYP_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVOSYP_one_poi nter |'S ACCESS SUDVOSYP_one_type ;
FUNCTI ON SUDVOSYP_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSYP_i t em poi nt er)

SUDVOSYP : SUDVOSYP_it em poi nt er: =SUDVOSYP_i t em addr ess_access(
SUDVOSYP_nenory' ADDRESS) ;
FUNCTI ON SUDVOSYP_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSYP_one_poi nter) ;

SUDVOSYP_one : SUDVOSYP_one_poi nt er : =SUDVOSYP_one_addr ess_access(
SUDVOSYP_nenory' ADDRESS) ;

TYPE SUDVRAD1_itemtype IS
RECORD
OVER : FLOAT :=0.0 ;

-- Xx-position diff, in yards

END RECORD;

TYPE SUDVRADL_item pointer IS ACCESS SUDVRADL_item type ;
TYPE SUDVRAD1_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVRAD1_one_poi nter |'S ACCESS SUDVRADL_one_type ;
FUNCTI ON SUDVRAD1_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRAD1_i t em poi nt er)

SUDVRAD1 : SUDVRADL_item pointer: =SUDVRADL_i t em addr ess_access(
SUDVRAD1_nenory' ADDRESS) ;
FUNCTI ON SUDVRAD1_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRAD1_one_poi nter) ;

SUDVRAD1_one : SUDVRAD1_one_poi nt er : =SUDVRAD1_one_addr ess_access(
SUDVRAD1_nenory' ADDRESS) ;
TYPE SUDVRAD2_itemtype IS

M -24

RECORD

OVER : FLOAT :=0.0 ;
-- y-position diff, in yards
END RECORD;

TYPE SUDVRAD2_item pointer IS ACCESS SUDVRAD2_item type ;
TYPE SUDVRAD2_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVRAD2_one_poi nter |'S ACCESS SUDVRAD2_one_type ;
FUNCTI ON SUDVRAD2_i t em addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRAD2_i t em poi nt er)

SUDVRAD2 : SUDVRAD2_item poi nter: =SUDVRAD2_i t em addr ess_access(
SUDVRAD2_nenory' ADDRESS) ;
FUNCTI ON SUDVRAD2_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRAD2_one_poi nter) ;

SUDVRAD2_one : SUDVRAD2_one_poi nt er : =SUDVRAD2_one_addr ess_access(
SUDVRAD2_nenory' ADDRESS) ;

TYPE FTCONDAT itemtype IS
RECORD
FVEQRADG : fixed32s4 ;

END RECORD;

TYPE FTCONDAT one_type IS ARRAY (0..98) OF cns2_word ;
TYPE FTCONDAT_one_poi nter |'S ACCESS FTCONDAT one_type ;
TYPE FTCONDAT_words_type IS ARRAY (0..98 , 0..0) COF cns2_word ;
TYPE FTCONDAT_wor ds_poi nter 1S ACCESS FTCONDAT_wor ds_type ;
TYPE FTCONDAT_type IS ARRAY (0..98) OF FTCONDAT_item type ;
TYPE FTCONDAT_item pointer IS ACCESS FTCONDAT_type ;
FUNCTI ON FTCONDAT_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCONDAT_one_poi nter) ;

FTCONDAT_one : FTCONDAT_one_poi nt er : =FTCONDAT_one_addr ess_access(
FTCONDAT_nenory' ADDRESS) ;
FUNCTI ON FTCONDAT_wor ds_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCONDAT_wor ds_poi nt er)

FTCONDAT_wor ds : FTCONDAT_wor ds_poi nt er : =FTCONDAT_wor ds_addr ess_access(
FTCONDAT_one. ALL' ADDRESS) ;
FUNCTI ON FTCONDAT_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCONDAT_i t em poi nt er)

FTCONDAT : FTCONDAT_item pointer ;
TYPE FTCSS_ itemtype IS
RECORD
FVTIME : FLOAT ;
-- solution update tinme
FVTXP : FLOAT ;
-- X position in yards
FVTYP : FLOAT ;
-- Y position in yards
FVTXV : FLOAT ;
-- X velocity in yards/sec
FVTYV : FLOAT ;
-- Y velocity in yards/sec
END RECORD;

TYPE FTCSS one_type IS ARRAY (0..494) OF cns2_word ;
TYPE FTCSS_one_pointer |'S ACCESS FTCSS one_type ;
TYPE FTCSS words_type IS ARRAY (0..98 , 0..4) OF cns2_word ;
TYPE FTCSS_wor ds_pointer |'S ACCESS FTCSS words_type ;
TYPE FTCSS type IS ARRAY (0..98) OF FTCSS itemtype ;
TYPE FTCSS_item pointer |'S ACCESS FTCSS type ;
FUNCTI ON FTCSS_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCSS_one_poi nter) ;
FTCSS_one : FTCSS_one_poi nt er: =FTCSS_one_addr ess_access(FTCSS_nenory'
ADDRESS) ;
FUNCTI ON FTCSS_wor ds_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCSS_wor ds_poi nter) ;
FTCSS _words : FTCSS_wor ds_poi nt er: =FTCSS_wor ds_addr ess_access(FTCSS_one.
ALL' ADDRESS) ;
FUNCTI ON FTCSS_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTCSS_i tem poi nter) ;
FTCSS : FTCSS_item pointer ;
TYPE FTPKSS itemtype IS
RECORD

FVTXP : FLOAT ;
-- PKed target X position in yards
FVTYP : FLOAT ;
-- PKed target Y position in yards
FVRNG : FLOAT ;
-- PKed target range in yards
FVBRG : FLOAT ;
-- PKed target bearing in radians
FVTGTLAT : FLOAT ;
-- PKed target latitude
FVTGTLON : FLOAT ;

-- PKed target |ongitude

END RECORD;

TYPE FTPKSS one_type IS ARRAY (0..593) OF cnms2_word ;
TYPE FTPKSS_one_poi nter | S ACCESS FTPKSS one_type ;
TYPE FTPKSS words_type IS ARRAY (0..98 , 0..5) OF cns2_word ;
TYPE FTPKSS_words_poi nter |'S ACCESS FTPKSS words_type ;
TYPE FTPKSS type IS ARRAY (0..98) OF FTPKSS_ itemtype ;
TYPE FTPKSS_ item pointer IS ACCESS FTPKSS type ;
FUNCTI ON FTPKSS_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTPKSS_one_poi nter) ;
FTPKSS _one : FTPKSS_one_poi nt er: =FTPKSS_one_addr ess_access(FTPKSS_nenory'
ADDRESS) ;
FUNCTI ON FTPKSS_wor ds_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTPKSS_wor ds_poi nter) ;

FTPKSS words : FTPKSS wor ds_poi nt er : =FTPKSS_wor ds_addr ess_access(
FTPKSS_one. ALL' ADDRESS) ;
FUNCTI ON FTPKSS_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>FTPKSS_i t em poi nter) ;
FTPKSS : FTPKSS_item pointer ;
TYPE SUDVCSLT itemtype IS
RECORD
OVER : FLOAT := 32.0*(FKPI 2/360.0) ;
--own ship latitude
END RECORD;

TYPE SUDVOSLT_item pointer IS ACCESS SUDVOSLT itemtype ;
TYPE SUDVOSLT _one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVOSLT_one_poi nter |I'S ACCESS SUDVOSLT _one_type ;
FUNCTI ON SUDVOSLT_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSLT_i t em poi nt er)

SUDVOSLT : SUDVOSLT_item pointer: =SUDVOSLT_i t em addr ess_access(
SUDVOSLT_nenory' ADDRESS) ;
FUNCTI ON SUDVOSLT_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSLT_one_poi nter) ;

SUDVOSLT_one : SUDVOSLT_one_poi nt er : =SUDVOSLT_one_addr ess_access(
SUDVOSLT_nenory' ADDRESS) ;
TYPE SUDVOSLN itemtype IS
RECORD
OVER : FLOAT := (-120.0)*(FKPI2/360.0) ;
--own ship | ongitude
END RECORD;

TYPE SUDVOSLN item pointer IS ACCESS SUDVOSLN item type ;
TYPE SUDVOSLN one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVOSLN one_poi nter |I'S ACCESS SUDVOSLN one_type ;
FUNCTI ON SUDVOSLN_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSLN i t em poi nt er)

SUDVOSLN : SUDVOSLN_ it em poi nter: =SUDVOSLN i t em addr ess_access(
SUDVOSLN_nenory' ADDRESS) ;
FUNCTI ON SUDVOSLN_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVOSLN_one_poi nter) ;

SUDVOSLN one : SUDVOSLN one_poi nt er : =SUDVOSLN_one_addr ess_access(
SUDVOSLN_nenory' ADDRESS) ;

TYPE SUDVRNG item type IS

RECORD
OVER : FLOAT ;

-- (paraneter) range

END RECORD;

TYPE SUDVRNG item pointer |I'S ACCESS SUDVRNG i tem type ;
TYPE SUDVRNG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE SUDVRNG one_pointer |'S ACCESS SUDVRNG one_type ;
FUNCTI ON SUDVRNG i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRNG i t em poi nter) ;
SUDVRNG : SUDVRNG i t em poi nt er: =SUDVRNG i t em addr ess_access(
SUDVRNG_nenor y' ADDRESS) ;
FUNCTI ON SUDVRNG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVRNG _one_poi nt er)
SUDVRNG one : SUDVRNG one_poi nt er: =SUDVRNG_one_addr ess_access(
SUDVRNG_nenor y' ADDRESS) ;
TYPE SUDVBRG itemtype IS
RECORD
OVER : FLOAT ;
-- (paraneter) bearing
END RECORD;

TYPE SUDVBRG item pointer |I'S ACCESS SUDVBRG item type ;
TYPE SUDVBRG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE SUDVBRG one_poi nter |'S ACCESS SUDVBRG one_type ;
FUNCTI ON SUDVBRG it em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVBRG i t em poi nter) ;
SUDVBRG : SUDVBRG it em poi nt er: =SUDVBRG i t em addr ess_access(
SUDVBRG_nenor y' ADDRESS) ;
FUNCTI ON SUDVBRG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVBRG one_poi nt er)
SUDVBRG one : SUDVBRG one_poi nt er: =SUDVBRG _one_addr ess_access(
SUDVBRG_nenor y' ADDRESS) ;
TYPE SUDVLAT1 itemtype IS
RECORD
OVER : FLOAT ;
-- (paraneter) input |atitude
END RECORD;

TYPE SUDVLAT1_ item pointer |S ACCESS SUDVLAT1_ itemtype ;
TYPE SUDVLAT1 one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVLAT1_one_poi nter |'S ACCESS SUDVLAT1 one_type ;
FUNCTI ON SUDVLAT1_item address_access IS
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLAT1_i t em poi nter)

SUDVLAT1 : SUDVLAT1_item pointer: =SUDVLAT1_item address_access(
SUDVLAT1_nenory' ADDRESS) ;
FUNCTI ON SUDVLAT1_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLAT1_one_poi nter) ;
SUDVLAT1_one : SUDVLAT1_one_poi nt er: =SUDVLAT1_one_addr ess_access(
SUDVLAT1_nenory' ADDRESS) ;
TYPE SUDVLAT2_itemtype IS
RECORD
OVER : FLOAT ;
-- (paraneter) output l|atitude
END RECORD;

TYPE SUDVLAT2_item pointer |S ACCESS SUDVLAT2_ item type ;
TYPE SUDVLAT2_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVLAT2_one_poi nter |'S ACCESS SUDVLAT2_one_type ;
FUNCTI ON SUDVLAT2_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLAT2_i t em poi nt er)

SUDVLAT2 : SUDVLAT2_item pointer: =SUDVLAT2_i t em addr ess_access(
SUDVLAT2_nenory' ADDRESS) ;
FUNCTI ON SUDVLAT2_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLAT2_one_poi nter) ;
SUDVLAT2_one : SUDVLAT2_one_poi nt er : =SUDVLAT2_one_addr ess_access(
SUDVLAT2_nenory' ADDRESS) ;
TYPE SUDVLON1_itemtype IS
RECORD
OVER : FLOAT ;
-- (paraneter) input |ongitude
END RECORD;

TYPE SUDVLONL_item pointer IS ACCESS SUDVLONL_item type ;
TYPE SUDVLON1_one_type IS ARRAY (0..0) OF cnms2_word ;

M -27

TYPE SUDVLON1_one_poi nter |I'S ACCESS SUDVLON1_one_type ;
FUNCTI ON SUDVLON1_item address_access IS
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLON1_i t em poi nt er)

SUDVLON1 : SUDVLONL_item pointer: =SUDVLONL_item address_access(
SUDVLON1_nenory' ADDRESS) ;
FUNCTI ON SUDVLON1_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLON1_one_poi nter) ;

SUDVLON1_one : SUDVLON1_one_poi nt er: =SUDVLON1_one_addr ess_access(
SUDVLON1_nenory' ADDRESS) ;

TYPE SUDVLON2_itemtype IS
RECORD
OVER : FLOAT ;

-- (paraneter) output |ongitude

END RECORD;

TYPE SUDVLON2_item pointer IS ACCESS SUDVLON2_item type ;
TYPE SUDVLON2_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVLON2_one_poi nter |'S ACCESS SUDVLON2_one_type ;
FUNCTI ON SUDVLON2_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLON2_i t em poi nt er)

SUDVLON2 : SUDVLON2_item pointer: =SUDVLON2_i t em addr ess_access(
SUDVLON2_nenory' ADDRESS) ;
FUNCTI ON SUDVLON2_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVLON2_one_poi nter) ;

SUDVLON2_one : SUDVLON2_one_poi nt er : =SUDVLON2_one_addr ess_access(
SUDVLON2_nenory' ADDRESS) ;

TYPE VRAD1 itemtype IS
RECORD
OVER : FLOAT ;

-- (paraneter) two ATAN argunents

END RECORD;

TYPE VRAD1_item pointer |'S ACCESS VRADL item type ;
TYPE VRAD1_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE VRAD1_one_poi nter |'S ACCESS VRADL_one_type ;
FUNCTI ON VRAD1_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VRADL_i tem poi nter) ;
VRAD1 : VRADL_item pointer:=VRADL_item address_access(VRADL_nenory'
ADDRESS) ;
FUNCTI ON VRAD1_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VRAD1_one_poi nter) ;
VRAD1_one : VRADL_one_poi nter: =VRAD1_one_addr ess_access(VRAD1_nenory'
ADDRESS) ;
TYPE VRAD2_ itemtype IS
RECORD
OVER : FLOAT ;
-- (paraneter) two ATAN argunents
END RECORD;

TYPE VRAD2_item pointer IS ACCESS VRAD2_item type ;
TYPE VRAD2_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE VRAD2_one_poi nter |'S ACCESS VRAD2_one_type ;
FUNCTI ON VRAD2_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VRAD2_i tem poi nter) ;
VRAD2 : VRAD2_item pointer: =VRAD2_i tem addr ess_access(VRAD2_nenory'
ADDRESS) ;
FUNCTI ON VRAD2_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VRAD2_one_poi nter) ;
VRAD2_one : VRAD2_one_poi nt er: =VRAD2_one_addr ess_access(VRAD2_nenory'
ADDRESS) ;
END SYSD ;
USE nmenory_use ;
PACKAGE SYSP | S
- - SYS- PRCC
FUNCTI ON SUDPATAN (SUDPATAN_VRAD1 : | N FLOAT ; SUDPATAN_VRAD2 : | N FLOAT

)

RETURN | NTEGER ;

PROCEDURE SUDPKFCS ;

PROCEDURE SUDPRBLL (SUDPRBLL_SUDVRNG : | N FLOAT ; SUDPRBLL_SUDVBRG : IN
FLOAT ; SUDPRBLL_SUDVLAT1 : | N FLOAT ; SUDPRBLL_SUDVLONL : | N FLOAT ;
SUDPRBLL_SUDVLAT2 : OUT FLOAT ; SUDPRBLL_SUDVLON2 : OUT FLOAT) ;

END SYSP ;

M -28

USE nmenory_use ;
USE SYSD ;

USE SYSP ;
PACKAGE extdef IS

PROCEDURE SUDPKFCS RENAMES SYSP. SUDPKFCS ;

PROCEDURE SUDPRBLL (SUDPRBLL_SUDVRNG : | N FLOAT ; SUDPRBLL_SUDVBRG : IN
FLOAT ; SUDPRBLL_SUDVLAT1 : |IN FLOAT ; SUDPRBLL_SUDVLONL : | N FLOAT ;
SUDPRBLL_SUDVLAT2 : OUT FLOAT ; SUDPRBLL_SUDVLON2 : OUT FLOAT) RENAMES

SYSP. SUDPRBLL ;
END ext def ;
END MK2 ;

W TH cns2_t 0o_ada_predefined ;
USE cns2_t o_ada_predefined ;
W TH UNCHECKED_CONVERS| ON ;
W TH SYSTEM ;
USE SYSTEM ;
WTH math_lib_cnms2 ;
USE nmath_lib_cnms2 ;
W TH MK2 ;
USE MK2 ;
PACKAGE BODY MK2 | S
USE nmenory_use ;
USE SYSD ;
USE SYSP ;
PACKAGE BODY SYSD I S
PROCEDURE FTCONDAT_item address_access_init IS
p : FTCONDAT_item poi nter: =FTCONDAT_i t em addr ess_access(FTCONDAT_one.
ALL' ADDRESS) ;
BEG N
p. ALL(0). FVEQRADG : = 6975563. 33 ;
FTCONDAT : = p ;
END FTCONDAT_i t em address_access_init ;
PROCEDURE FTCSS_item address_access_init IS
p : FTCSS_item pointer:=FTCSS_item address_access(FTCSS one. ALL' ADDRESS
)
BEG N
p. ALL(O0).FVTIME : = 0.0 ;
p. ALL(O0). FVTXP :
p. ALL(O). FVTYP :
p. ALL(0). FVTXV :
p. ALL(0). FVTYV :
FTCSS := p ;
END FTCSS_ item address_access_init ;
PROCEDURE FTPKSS item address_access_init IS
p : FTPKSS_ item pointer:=FTPKSS_item address_access(FTPKSS _one. ALL'
ADDRESS) ;
BEG N

onnn
cocoo
cocoo

.ALL(0). FVTXP :
.ALL(O). FVTYP :
.ALL(0). FVRNG :
.ALL(0). FVBRG :
. ALL(O). FVTGTLAT :
.ALL(O).FVTGTLON :
FTPKSS := p ;

END FTPKSS_ item address_access_init ;

END SYSD ;

[cNeoNoNe]

(TR TIRTENT
cooo

o

oo

T T T T TTOT

.0 ;
.0

USE nmenory_use ;
USE SYSD ;
USE SYSP ;
PACKAGE BODY SYSP IS
FUNCTI ON SUDPATAN (SUDPATAN_VRAD1 : | N FLOAT ; SUDPATAN_VRAD2 : | N FLOAT
) RETURN | NTEGER
IS
TYPE VATAN item type | S
RECORD
OVER : FLOAT ;
END RECORD;

TYPE VATAN_item pointer IS ACCESS VATAN item type ;
TYPE VATAN one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE VATAN one_pointer IS ACCESS VATAN one_type ;
FUNCTI ON VATAN_ it em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VATAN_i tem poi nter) ;

VATAN : VATAN_ it em poi nter: =VATAN i t em addr ess_access(VATAN_nmenory'
ADDRESS) ;
FUNCTI ON VATAN one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>VATAN _one_poi nter) ;
VATAN one : VATAN one_poi nt er: =VATAN one_addr ess_access(VATAN nenory'
ADDRESS) ;
BEG N
VRADL. ALL. OVER : = SUDPATAN_VRADL ;
VRAD2. ALL. OVER : = SUDPATAN_VRAD? ;
| F VRADL. ALL. OVER<0. 00001 AND VRAD2. ALL. OVER<0. 00001 THEN
VATAN. ALL. OVER := 0.0 ;
ELSE
VATAN. ALL. OVER : = ATAN2(VRAD1. ALL. OVER, VRAD2. ALL. OVER) ;
END | F;
RETURN | NTEGER(VATAN. ALL. OVER) ;
END SUDPATAN ;
PROCEDURE SUDPKFCS | S

-- Segment : FCS

-- CSCI Nane: TMAB

-- TLCSC: SUD

-- LLCSC: SUDLTD

-- UNI T: SUDPKFCS

-- Part Nunber PRG528777

-- Cl assification: UNCLASSI FI ED

-- Conpany_I D Rayt heon, CAGE Code 49956
-- Li brary Nane MK2ECPS6: [SRC. FC. TMAB. SUD. SRC]
-- El ement Nane SUDPKFCS. SRC

-- Revi si on Nunber 1

-- Revi sion Date, Tine 25- NOV- 1992 10: 57

-- Current Date, Tine 3- MAR- 1995 16: 44

-- Aut hor: Mark Dam ani

-- Overview. This purpose of this procedure is to perform
-- the following for all FCS tactical/training
-- targets not including OTH targets:

-- 1) Conpute PKed Target X Position.

-- 2) Conpute PKed Target Y Position.

-- 3) Conpute PKed Target Range

-- 4) Compute PKed Target Bearing

-- 5) Conpute PKed Target Latitude and Longitude
-- by calling the SUDPRBLL system comon

-- routine.

-- Ef fects:

-- Requi rements Trace:

-- Al gorithm

-- Notes: This procedure will be called during a SUD Tinme
-- Dependent entrance.

-- Excepti ons Rai sed:

TYPE SUDVDTME_itemtype IS
RECORD
OVER : FLOAT ;
--Target Solution PK Delta Tine
END RECORD;

TYPE SUDVDTME_item pointer IS ACCESS SUDVDTME item type ;
TYPE SUDVDTME_one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE SUDVDTME_one_poi nter |'S ACCESS SUDVDTME_one_type ;
FUNCTI ON SUDVDTME_i t em addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVDTME_i t em poi nt er

)
SUDVDTME : SUDVDTME_i t em poi nter: =SUDVDTME_i t em addr ess_access(
SUDVDTME_nenor y' ADDRESS) ;
FUNCTI ON SUDVDTME_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SUDVDTME_one_poi nt er)

SUDVDTME_one : SUDVDTME_one_poi nt er : =SUDVDTME_one_addr ess_access(
SUDVDTME_nenor y' ADDRESS) ;
TYPE TGTLAT itemtype IS
RECORD
OVER : FLOAT ;
--PKed Target Latitude
END RECORD;

TYPE TGTLAT_item pointer IS ACCESS TGILAT itemtype ;
TYPE TGTLAT_one_type IS ARRAY (0..0) OF cns2_word ;
TYPE TGTLAT_one_poi nter |'S ACCESS TGILAT one_type ;
FUNCTI ON TGTLAT_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TGTLAT_i t em poi nter)

TGTLAT : TGILAT_item pointer: =TGTLAT_item address_access(TGTLAT_nenory'
ADDRESS) ;
FUNCTI ON TGTLAT_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TGTLAT_one_poi nter) ;

TGTLAT_one : TGILAT_one_poi nt er: =TGTLAT_one_addr ess_access(
TGTLAT_nenory' ADDRESS) ;

TYPE TGTLONG itemtype IS
RECORD
OVER : FLOAT ;

--PKed Target Longitude

END RECORD;

TYPE TGTLONG item pointer |'S ACCESS TGTLONG itemtype ;
TYPE TGTLONG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE TGTLONG one_pointer |'S ACCESS TGILONG one_type ;
FUNCTI ON TGTLONG it em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TGTLONG i t em poi nt er)

TGTLONG : TGTLONG item pointer: =TGTLONG i t em addr ess_access(
TGTLONG _nenory' ADDRESS) ;
FUNCTI ON TGTLONG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TGTLONG _one_poi nt er)

TGTLONG one : TGILONG one_poi nt er: =TGTLONG one_addr ess_access(
TGTLONG _nenory' ADDRESS) ;

-- - Conmpute FCS Position Kept Target X and Y Positions

-- Set Target Solution Delta Tine to current System Tine
-- m nus System Sol ution table Solution Update Time for
-- current |CN.
BEG N
SUDVDTME. ALL. OVER : = SUDVTI ME. ALL. OVER- FTCSS. ALL(| CNX. ALL. OVER) .
FVTI ME ;
-- Comput e FCS PK Target X Position.

M -32

FTPKSS. ALL(| CNX. ALL. OVER) . FVTXP : = FTCSS. ALL(| CNX. ALL. OVER) . FVTXP+(
FTCSS. ALL(| CNX. ALL. OVER) . FVTXV* SUDVDTME. ALL. OVER) ;

-- Comput e FCS PK Target Y Position.

FTPKSS. ALL(| CNX. ALL. OVER) . FVTYP : = FTCSS. ALL(| CNX. ALL. OVER) . FVTYP+(
FTCSS. ALL(| CNX. ALL. OVER) . FVTYV* SUDVDTME. ALL. OVER) ;

-- - Compute FCS Position Kept Target Range.

FTPKSS. ALL(| CNX. ALL. OVER) . FVRNG : = SQRT((FTPKSS. ALL(| CNX. ALL. OVER) .
FVTXP- SUDVOSXP. ALL. OVER) * (FTPKSS. ALL(| CNX. ALL. OVER) . FVTXP- SUDVOSXP.
ALL. OVER) +(FTPKSS. ALL(| CNX. ALL. OVER) . FVTYP- SUDVOSYP. ALL. OVER) * (
FTPKSS. ALL(| CNX. ALL. OVER) . FVTYP- SUDVOSYP. ALL. OVER)) ;

I F FTPKSS. ALL(| CNX. ALL. OVER) . FVRNG> FLOAT(999999) THEN
FTPKSS. ALL(| CNX. ALL. OVER) . FVRNG : = FLOAT(999999) ;

-- - Conpute FCS Position Kept Target Bearing.

-- Cip target range to MAX

END | F;

SUDVRAD1. ALL. OVER : = FTPKSS. ALL(| CNX. ALL. OVER) . FVTXP- SUDVOSXP. ALL.
OVER ;

SUDVRAD2. ALL. OVER : = FTPKSS. ALL(| CNX. ALL. OVER) . FVTYP- SUDVOSYP. ALL.
OVER ;

FTPKSS. ALL(1 CNX. ALL. OVER) . FVBRG : = FLOAT(SUDPATAN(SUDVRADL. ALL. OVER,
SUDVRAD2. ALL. OVER))

-- PKed Target Latitude and PKed Target Longitude shall be
-- conputed using the Range, Azinmuth to Latitude, Longitude
-- (SUDPRBLL) common conversion function.

-- I nput paraneters shall include current Oam Ship Latitude
-- and Om Ship Longitude, PKed Target Range, and PKed Target
-- Beari ng.

-- Qut put paraneters shall be PKed Target Latitude and PKed
-- Tar get Longitude.
SUDVRNG. ALL. OVER : = FTPKSS. ALL(| CNX. ALL. OVER) . FVRNG ;
SUDVBRG. ALL. OVER : = FTPKSS. ALL(| CNX. ALL. OVER) . FVBRG ;
SUDPRBLL (SUDVRNG. ALL. OVER , SUDVBRG. ALL. OVER , SUDVOSLT. ALL. OVER ,
SUDVOSLN. ALL. OVER , TGTLAT. ALL. OVER , TGTLONG ALL. OVER) ;
-- Save PKed Target Latitude in PK System Sol ution table.
FTPKSS. ALL(| CNX. ALL. OVER) . FVTGTLAT : = TGTLAT. ALL. OVER ;
-- Save PKed Target Longitude in PK System Sol ution table.
FTPKSS. ALL(| CNX. ALL. OVER) . FVTGTLON : = TGTLONG. ALL. OVER ;
END SUDPKFCS ;
PROCEDURE SUDPRBLL (SUDPRBLL_SUDVRNG : | N FLOAT ; SUDPRBLL_SUDVBRG : | N
FLOAT ; SUDPRBLL_SUDVLAT1 : I N FLOAT ; SUDPRBLL_SUDVLONL : I N FLOAT ;
SUDPRBLL_SUDVLAT2 : OUT FLOAT ; SUDPRBLL_SUDVLON2 : OUT FLOAT) IS

-- Segment : FCS

-- CSCI Nane: TMAB

-- TLCSC: SUD

-- LLCSC: SUDLTD

-- UNI T: SUDPRBLL

-- Part Nunber PRG528777

-- Cl assification: UNCLASSI FI ED

-- Conpany_I D Rayt heon, CAGE Code 49956
-- Li brary Nane MK2ECPS6: [SRC. FC. TMAB. SUD. SRC]
-- El ement Nane SUDPRBLL. SRC

-- Revi si on Nunber 2

-- Revi sion Date, Tine 27- APR- 1993 16: 28

-- Current Date, Tine 3- MAR- 1995 16: 44

-- Aut hor : JimPryor (JRP), Bill Croasdal e (WKC)

-- Overvi ew

-- The Range/Bearing to Lat/Lon unit wll

-- calculate the latitude and | ongitude coordinates of a
-- position represented by a range, bearing fromthe input

M -33

-- I atitude/l ongitude position.
-- Effects:
-- Requi rements Trace: PROCESS NAV

-- Al gorithm

-- theta = RIRE

-- Target Latitude =

-- Arcsin[sin(P0) * cos(theta) +
-- cos(P0) * sint(theta) * cos(By)]

-- Target Longitude =

-- arctan2[sin(theta) * sin(By),

-- cos(P0) * cos(theta) -

-- sin(P0) * sin(theta) * cos(By)] + U0

Range to target frominput Lat/Lon(yds)
Bearing to target frominput Lat/Lon

i nput Latitude

i nput Longi tude

R
By
-- PO
uo
RE Radi us of the earth(from FTCONDAT)

-- Not es:
-- Al'l angl es(input/output) in floating point Radians,
-- and all ranges in floating point yards.

-- Excepti ons Rai sed:

TYPE RBLLTHET itemtype IS
RECORD
OVER : FLOAT ;
--interimvalue (R REO
END RECORD;

TYPE RBLLTHET_ item pointer IS ACCESS RBLLTHET item type ;
TYPE RBLLTHET one_type IS ARRAY (0..0) OF cnms2_word ;
TYPE RBLLTHET_one_pointer |'S ACCESS RBLLTHET one_type ;
FUNCTI ON RBLLTHET_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>RBLLTHET_i t em poi nt er
)
RBLLTHET : RBLLTHET_item pointer: =RBLLTHET i tem address_access(
RBLLTHET_menory' ADDRESS) ;
FUNCTI ON RBLLTHET_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>RBLLTHET_one_poi nt er)

RBLLTHET_one : RBLLTHET_one_poi nt er: =RBLLTHET_one_addr ess_access(
RBLLTHET_nenory' ADDRESS) ;
TYPE TEMPARG item type IS
RECORD
OVER : FLOAT ;
--interimvalue for arcsin
END RECORD;

TYPE TEMPARG item pointer |S ACCESS TEMPARG itemtype ;
TYPE TEMPARG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE TEMPARG one_poi nter | S ACCESS TEMPARG one_type ;
FUNCTI ON TEMPARG i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TEMPARG i t em poi nt er)

TEMPARG : TEMPARG item pointer: =TEMPARG i t em addr ess_access(
TEMPARG _nenor y' ADDRESS) ;
FUNCTI ON TEMPARG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>TEMPARG _one_poi nt er)

TEMPARG one : TEMPARG one_poi nt er : =TEMPARG _one_addr ess_access(
TEMPARG _nenory' ADDRESS) ;

TYPE COSTHET itemtype IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE COSTHET_item pointer IS ACCESS COSTHET itemtype ;
TYPE COSTHET one_type IS ARRAY (0..0) OF cns2_word ;

M -34

TYPE COSTHET_one_poi nter | S ACCESS COSTHET_one_t ype ;
FUNCTI ON COSTHET_i t em addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSTHET_i t em poi nt er)

COSTHET : COSTHET_item poi nter: =COSTHET_i t em addr ess_access(
COSTHET_nenor y' ADDRESS) ;
FUNCTI ON COSTHET_one_addr ess_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSTHET_one_poi nt er)

COSTHET_one : COSTHET_one_poi nt er: =COSTHET_one_addr ess_access(
COSTHET_nenor y' ADDRESS) ;

TYPE SINTHET itemtype IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINTHET_item pointer |'S ACCESS SINTHET_itemtype ;
TYPE SI NTHET _one_type IS ARRAY (0..0) OF cns2_word ;
TYPE SI NTHET_one_poi nter |'S ACCESS SI NTHET_one_t ype ;
FUNCTI ON SI NTHET_i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SI NTHET_i t em poi nt er)

SINTHET : SINTHET_item pointer:=SI NTHET_i t em address_access(
SI NTHET_nmenor y' ADDRESS) ;
FUNCTI ON SI NTHET_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>S| NTHET_one_poi nt er)

SI NTHET_one : SI NTHET_one_poi nt er: =SI NTHET_one_addr ess_access(
SI NTHET_nmenor y' ADDRESS) ;
TYPE COSLAT1_itemtype IS
RECORD
OVER : FLOAT ;
END RECORD;

TYPE COSLAT1_item pointer |S ACCESS COSLAT1_ itemtype ;
TYPE COSLAT1_one_type IS ARRAY (0..0) OF cns2_word ;
TYPE COSLAT1_one_pointer |S ACCESS COSLAT1_one_type ;
FUNCTI ON COSLAT1_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSLAT1_i t em poi nter)

COSLAT1 : COSLAT1_item pointer:=COSLAT1_item address_access(
COSLAT1_nenory' ADDRESS) ;
FUNCTI ON COSLAT1_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSLAT1_one_poi nter)

COSLAT1_one : COSLAT1_one_poi nt er: =COSLAT1_one_address_access(
COSLAT1_nenory' ADDRESS) ;

TYPE SINLAT1_ itemtype IS
RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINLAT1_ item pointer |'S ACCESS SINLAT1 itemtype ;
TYPE SI NLAT1_one_type IS ARRAY (0..0) OF cns2_word ;
TYPE SI NLAT1_one_pointer |S ACCESS SI NLAT1_one_type ;
FUNCTI ON SI NLAT1_item address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SI NLAT1_i t em poi nter)

SI NLAT1 : SINLAT1_item pointer:=SINLAT1_item address_access(
SI NLAT1_nenory' ADDRESS) ;
FUNCTI ON SI NLAT1_one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>S| NLAT1_one_poi nter)

SI NLAT1_one : SI NLAT1_one_poi nter:=SI NLAT1_one_address_access(
SI NLAT1_nenory' ADDRESS) ;
TYPE COSBRG itemtype IS
RECORD
OVER : FLOAT ;
END RECORD;

TYPE COSBRG item pointer IS ACCESS COSBRG item type ;
TYPE COSBRG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE COSBRG one_poi nter |'S ACCESS COSBRG one_type ;
FUNCTI ON COSBRG it em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSBRG i t em poi nt er)

i

M -35

COSBRG :
COSBRG_i t em poi nt er : =COSBRG _i t em addr ess_access(COSBRG_nenory'
ADDRESS) ;
FUNCTI ON COSBRG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>COSBRG _one_poi nter) ;

COSBRG_one : COSBRG one_poi nt er: =COSBRG _one_addr ess_access(
COSBRG_nenor y' ADDRESS) ;

TYPE SINBRG itemtype IS

RECORD
OVER : FLOAT ;

END RECORD;

TYPE SINBRG_ item pointer IS ACCESS SI NBRG item type ;
TYPE SINBRG one_type IS ARRAY (0..0) OF cns2_word ;
TYPE SI NBRG one_poi nter IS ACCESS S| NBRG one_type ;
FUNCTI ON SI NBRG_ i t em address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>SI NBRG_i t em poi nt er)

SI NBRG : SINBRG_item pointer: =S|I NBRG i tem address_access(SI NBRG nenory'
ADDRESS) ;
FUNCTI ON SI NBRG one_address_access | S
NEW UNCHECKED_CONVERSI ON(SOURCE=>ADDRESS, TARGET=>S| NBRG_one_poi nter) ;

SI NBRG_one : SI NBRG one_poi nter: =SI NBRG one_address_access(

S| NBRG_nenor y' ADDRESS) ;
BEG N

SUDVRNG. ALL. OVER :
SUDVBRG. ALL. OVER :
SUDVLAT1. ALL. OVER :
SUDVLON1. ALL. OVER :
RBLLTHET. ALL. OVER :

SUDPRBLL_SUDVRNG ;
SUDPRBLL_SUDVBRG ;
SUDPRBLL_SUDVLAT1 ;
SUDPRBLL_SUDVLONL ;
SUDVRNG. ALL. OVER/ FLOAT(FTCONDAT. ALL(0) . FVEQRADG)

COSTHET. ALL. OVER :
SI NTHET. ALL. OVER :
COSLAT1. ALL. OVER :
SI NLAT1. ALL. OVER :

COS(RBLLTHET. ALL. OVER) ;
SI N(RBLLTHET. ALL. OVER) ;
COS(SUDVLAT1. ALL. OVER) ;
S| N(SUDVLAT1. ALL. OVER) ;
COSBRG. ALL. OVER : = COS(SUDVBRG. ALL. OVER) ;
SI NBRG. ALL. OVER : = SI N(SUDVBRG. ALL. OVER) ;
TEMPARG. ALL. OVER : = SI NLAT1. ALL. OVER* COSTHET. ALL. OVER+COSLAT1. ALL.
OVER* SI NTHET. ALL. OVER* COSBRG. ALL. OVER ;
SUDVLAT2. ALL. OVER : = ASI N(TEMPARG. ALL. OVER) ;
SUDVLON2. ALL. OVER : = SUDPATAN(SI NTHET. ALL. OVER* SI NBRG. ALL. OVER,
COSLAT1. ALL. OVER* COSTHET. ALL. OVER- SI NLAT1. ALL. OVER* SI NTHET. ALL. OVER
* COSBRG. ALL. OVER) +SUDVLONL. ALL. OVER ;
| F SUDVLON2. ALL. OVER> FKPI THEN
SUDVLON2. ALL. OVER : = SUDVLON2. ALL. OVER- FKPI 2 ;
END | F;
SUDPRBLL_SUDVLAT?2 :
SUDPRBLL_SUDVLONZ :
END SUDPRBLL ;
END SYSP ;
END MK2 ;

SUDVLAT2. ALL. OVER ;
SUDVLON2. ALL. OVER ;

CCCC TRANSLATOR COMMON PACKAGE

with System
use System

wi th Unchecked_Conver si on;
package Cns2_To_Ada_Predefined is

Word : constant := 4; -- storage unit is byte

subtype Unsigned_Longword is |nteger

subtype Unsignedl is Unsigned_Longword range 0 .. 2**1 - 1;
subtype Unsigned2 is Unsigned_Longword range 0 .. 2**2 - 1;
subtype Unsigned3 is Unsigned_Longword range 0 .. 2**3 - 1;
subtype Unsigned4 is Unsigned_Longword range 0 .. 2**4 - 1
subtype Unsigned5 is Unsigned_Longword range 0 .. 2**5 - 1;
subtype Unsigned6 is Unsigned_Longword range 0 .. 2**6 - 1;
subtype Unsigned7 is Unsigned_Longword range 0 .. 2**7 - 1;
subtype Unsigned8 is Unsigned_Longword range 0 .. 2**8 - 1;
subtype Unsigned9 is Unsigned_Longword range 0 .. 2**9 - 1;
subtype Unsignedl0 is Unsigned_Longword range 0 .. 2**10 -
subtype Unsignedll is Unsigned_Longword range 0 .. 2**11 -
subtype Unsignedl2 is Unsigned_Longword range 0 .. 2**12 -
subtype Unsignedl3 is Unsigned_Longword range 0 .. 2**13 -
subtype Unsignedl4 is Unsigned_Longword range 0 .. 2**14 -
subtype Unsignedl5 is Unsigned_Longword range 0 .. 2**15 -
subtype Unsignedl6 is Unsigned_Longword range 0 .. 2**16 -
subtype Unsignedl7 is Unsigned_Longword range 0 .. 2**17 -
subtype Unsignedl8 is Unsigned_Longword range 0 .. 2**18 -
subtype Unsignedl9 is Unsigned_Longword range 0 .. 2**19 -
subtype Unsigned20 is Unsigned_Longword range 0 .. 2**20 -
subtype Unsigned2l is Unsigned_Longword range 0 .. 2**21 -
subtype Unsigned22 is Unsigned_Longword range 0 .. 2**22 -
subtype Unsigned23 is Unsigned_Longword range 0 .. 2**23 -
subtype Unsigned24 is Unsigned_Longword range 0 .. 2**24 -
subtype Unsigned25 is Unsigned_Longword range 0 .. 2**25 -
subtype Unsigned26 is Unsigned_Longword range 0 .. 2**26 -
subtype Unsigned27 is Unsigned_Longword range 0 .. 2**27 -
subtype Unsigned28 is Unsigned_Longword range 0 .. 2**28 -
subtype Unsigned29 is Unsigned_Longword range 0 .. 2**29 -
subtype Unsigned30 is Unsigned_Longword range 0 .. 2**30 -
subtype Unsigned3l is Unsigned_Longword range 0 .. 2**30 -
subtype Unsigned32 is Unsigned_Longword range 0 .. 2**30 -
subtype Unsigned63 is Unsigned_Longword range 0 .. 2**30 -
subtype Unsigned64 is Unsigned_Longword range 0 .. 2**30 -
subtype Signedl is Integer range -2**0 .. 2**1 - 1; -
subtype Signed2 is Integer range -2**1 .. 2**1 - 1; -
subtype Signed3 is Integer range -2**2 .. 2**2 - 1; -
subtype Signed4 is Integer range -2**3 .. 2**3 - 1; -
subtype Signed5 is Integer range -2**4 .. 2**4 - 1; -
subtype Signed6 is Integer range -2**5 .. 2**5 - 1; -
subtype Signed7 is Integer range -2**6 .. 2**6 - 1; -
subtype Signed8 is Integer range -2**7 .. 2**7 - 1; -
subtype Signed9 is Integer range -2**8 .. 2**8 - 1; -
subtype Signedl0 is Integer range -2**9 .. 2**9 - 1; -
subtype Signedll is Integer range -2**10 .. 2**10 - 1; -- |
subtype Signedl2 is Integer range -2**11 .. 2**11 - 1; -- |
subtype Signedl3 is Integer range -2**12 .. 2**12 - 1; -- |
subtype Signedl4 is Integer range -2**13 .. 2**13 - 1; -- |
subtype Signedl5 is Integer range -2**14 .. 2**14 - 1; -- |
subtype Signedl6 is Integer range -2**15 .. 2**15 - 1; -- |
subtype Signedl7 is Integer range -2**16 .. 2**16 - 1; -- |

M -37

, 4

PRRPRRPRPRPRRPRPRPRPRPRPRPRPRPRRPRPREPRPRERRPRRERE

OCoO~NOUIA WNBE

bytes per word

nNnunuLLLLLOLOLLOLOLOLOOOOuO
R R R R R R R R R R

us
us
us
us
us
us
us
us
us
10U $
11 U $
12 U $
13 U$
14 U $
15U $
16 U $
17 U $
18 U $
19U $
20U $
21 U $
22 U $
23 U $
24 U $
25 U $
26 U$
27 U $
28 U $
29 U $
30 U$
31 U$
32 U$
64 U$
64 U$

subtype Signedl8 is Integer range -2**17 .. 2**17 - 1; -- 1 18 S $
subtype Signedl9 is Integer range -2**18 .. 2**18 - 1; -- | 19 S $§
subtype Signed20 is Integer range -2**19 .. 2**19 - 1; -- | 20 S $
subtype Signed2l is Integer range -2**20 .. 2**20 - 1; -- |1 21 S $
subtype Signed22 is Integer range -2**21 .. 2**21 - 1; -- | 22 S $
subtype Signed23 is Integer range -2**22 .. 2**22 - 1; -- | 23 S $
subtype Signed24 is Integer range -2**23 .. 2**23 - 1; -- | 24 S $
subtype Signed25 is Integer range -2**24 .. 2**24 - 1; -- | 25 S $
subtype Signed26 is Integer range -2**25 .. 2**25 - 1; -- | 26 S $
subtype Signed27 is Integer range -2**26 .. 2**26 - 1; -- | 27 S $
subtype Signed28 is Integer range -2**27 .. 2**27 - 1; -- | 28 S $
subtype Signed29 is Integer range -2**28 .. 2**28 - 1; -- | 29 S $
subtype Signed30 is Integer range -2**29 .. 2**29 - 1; -- | 30 S $
subtype Signed3l is Integer range -2**30 .. 2**30 - 1; -- | 31 S $
subtype Signed32 is Integer; -- range -2**31..2**31-1; -- | 32 S $
subtype Signed33 is Integer; -- range -2**32..2**32-1; -- | 33 S $
subtype Signed37 is Integer; -- range -2**36..2**36-1; -- | 37 S $
subtype Signed40 is Integer; -- range -2**39..2**39-1; -- | 40 S $
subtype Signed48 is Integer; -- range -2**47..2**47-1; -- | 48 S $
subtype Signed56 is Integer; -- range -2**55..2**55-1; -- | 56 S $
subtype Signed64 is Integer; -- range -2**63..2**63-1; -- | 64 S $
-- Fixed point types
type Fixed2s2 is delta 2.0**(-2) range -2.0**1 .. 2.0**1 - 2.0**(-2);
type Fixed3s0 is delta 2.0**(-0) range -2.0**2 .. 2.0**7 - 2.0**(-0);
type Fixed3s5 is delta 2.0**(-5) range -2.0**2 .. 2.0**7 - 2.0**(-5);
type Fixed6s3 is delta 2.0**(-3) range -2.0**5 .. 2.0**5 - 2.0**(-3);
type Fixed7s4 is delta 2.0**(-4) range -2.0**6 .. 2.0**6 - 2.0**(-4);
type Fixed8s0 is delta 2.0**(-0) range -2.0**7 .. 2.0**7 - 2.0**(-0);
type Fixed8s3 is delta 2.0**(-3) range -2.0**7 .. 2.0**7 - 2.0**(-3);
type Fixed8s8 is delta 2.0**(-8) range -2.0**7 .. 2.0**7 - 2.0**(-8);
type Fixed9s0 is delta 2.0**(-0) range -2.0**8 .. 2.0**8 - 2.0**(-0);
type Fixed9s3 is delta 2.0**(-3) range -2.0**8 .. 2.0**8 - 2.0**(-3);
type Fixedl0s5 is delta 2.0**(-5) range -2.0**9 .. 2.0**9 - 2.0**(-5);
type FixedllsO is delta 2.0**(-0) range -2.0**10 .. 2.0**10 - 2.0**(-0);
type Fixedl12s12 is delta 2.0**(-12) range -2.0**(-1) .. 2.0**(-1) - 2.0**(-12);
type Fixed13s12 is delta 2.0**(-12) range -2.0**0 .. 2.0**0 - 2.0**(-12);
type Fixedl14s13 is delta 2.0**(-13) range -2.0**0 .. 2.0**0 - 2.0**(-13);
type Fixedl5s3 is delta 2.0**(-3) range -2.0**11 .. 2.0**11 - 2.0**(-3);
type Fixedl5s5 is delta 2.0**(-5) range -2.0**9 .. 2.0**9 - 2.0**(-5);
type Fixedl6sO0 is delta 2.0**(-0) range -2.0**15 .. 2.0**15 - 2.0**(-0);
type Fixedl6sl is delta 2.0**(-1) range -2.0**14 .. 2.0**14 - 2.0**(-1);
type Fixedl6s2 is delta 2.0**(-2) range -2.0**13 .. 2.0**13 - 2.0**(-2);
type Fixedl6s3 is delta 2.0**(-3) range -2.0**12 .. 2.0**12 - 2.0**(-3);
type Fixedl6s4 is delta 2.0**(-4) range -2.0**11 .. 2.0**11 - 2.0**(-4);
type Fixedl6s5 is delta 2.0**(-5) range -2.0**10 .. 2.0**10 - 2.0**(-5);
type Fixedl6s6 is delta 2.0**(-6) range -2.0**9 2.0**9 - 2.0**(-6);
type Fixedl6s7 is delta 2.0**(-7) range -2.0**8 2.0*%*8 - 2.0**(-7);
type Fixedl6s8 is delta 2.0**(-8) range -2.0**7 2.0%*7 - 2.0**(-8)
type Fixedl6s9 is delta 2.0**(-9) range -2.0**6 2.0%*6 - 2.0**(-9);
type Fixedl16s10 is delta 2.0**(-10) range -2.0**5 2.0**5 - 2.0**(-10);
type Fixedl16sl1ll is delta 2.0**(-11) range -2.0**4 2.0%*4 - 2.0**(-11)
type Fixedl16s12 is delta 2.0**(-12) range -2.0**3 2.0%*3 - 2.0%**(-12);
type Fixedl16s13 is delta 2.0**(-13) range -2.0**2 2.0%*2 - 2.0**(-13)
type Fixedl16s14 is delta 2.0**(-14) range -2.0**1 2.0%*1 - 2.0%**(-14);
type Fixedl16s15 is delta 2.0**(-15) range -2.0**0 2.0**0 - 2.0**(-15);
type Fixedl17s50 is delta 2.0**(-50) range -2.0**(-34) .. 2.0**(-34) - 2.0**(-50);
type Fixedl19s6 is delta 2.0**(-6) range -2.0**12 .. 2.0**12 - 2.0**(-6);
type Fixed24s8 is delta 2.0**(-8) range -2.0**15 .. 2.0**15 - 2.0**(-8);
type Fixed24s9 is delta 2.0**(-9) range -2.0**14 .. 2.0**14 - 2.0**(-9);
type Fixed30s3 is delta 2.0**(-3) range -2.0**26 .. 2.0**26 - 2.0**(-3);
type Fixed32s0 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed32sl is delta 2.0**(-1) range -2.0**30 .. 2.0**30 - 2.0**(-1);
type Fixed32s2 is delta 2.0**(-2) range -2.0**29 .. 2.0%**29 - 2.0**(-2);
type Fixed32s3 is delta 2.0**(-3) range -2.0**28 .. 2.0**28 - 2.0**(-3);
type Fixed32s4 is delta 2.0**(-4) range -2.0**27 .. 2.0%**27 - 2.0**(-4);
type Fixed32s5 is delta 2.0**(-5) range -2.0**26 .. 2.0**26 - 2.0**(-5);
type Fixed32s6 is delta 2.0**(-6) range -2.0**25 .. 2.0**25 - 2.0**(-6);
type Fixed32s7 is delta 2.0**(-7) range -2.0**24 .. 2.0%**24 - 2.0**(-7);
type Fixed32s8 is delta 2.0**(-8) range -2.0**23 .. 2.0**23 - 2.0**(-8);
type Fixed32s9 is delta 2.0**(-9) range -2.0**22 .. 2.0%**22 - 2.0**(-9);
type Fixed32s10 is delta 2.0**(-10) range -2.0**21 .. 2.0**21 - 2.0**(-10)
type Fixed32sl1l is delta 2.0**(-11) range -2.0**20 .. 2.0**20 - 2.0**(-11)

M -38

type Fixed32s12 is delta 2.0**(-12) range - 2.0**19 .. 2.0**19 - 2.0**(-12);
type Fixed32s13 is delta 2.0**(-13) range -2.0**18 .. 2.0**18 - 2.0**(-13)

type Fixed32s14 is delta 2.0**(-14) range -2.0**17 .. 2.0**17 - 2.0**(-14)

type Fixed32s15 is delta 2.0**(-15) range -2.0**16 .. 2.0**16 - 2.0**(-15)

type Fixed32s16 is delta 2.0**(-16) range -2.0**15 .. 2.0**15 - 2.0**(-16)

type Fixed32sl17 is delta 2.0**(-17) range -2.0**14 .. 2.0**14 - 2.0**(-17)

type Fixed32s18 is delta 2.0**(-18) range -2.0**13 .. 2.0**13 - 2.0**(-18)

type Fixed32s19 is delta 2.0**(-19) range -2.0**12 .. 2.0**12 - 2.0**(-19)

type Fixed32s20 is delta 2.0**(-20) range -2.0**11 .. 2.0**11 - 2.0**(-20)

type Fixed32s21 is delta 2.0**(-21) range -2.0**10 .. 2.0**10 - 2.0**(-21)

type Fixed32s22 is delta 2.0**(-22) range -2.0**9 2.0%*9 - 2.0%**(-22);

type Fixed32s23 is delta 2.0**(-23) range -2.0**8 2.0**8 - 2.0**(-23);

type Fixed32s24 is delta 2.0**(-24) range -2.0**7 2.0%*7 - 2.0%*(-24)

type Fixed32s25 is delta 2.0**(-25) range -2.0**6 2.0**6 - 2.0**(-25);

type Fixed32s26 is delta 2.0**(-26) range -2.0**5 2.0**5 - 2.0%**(-26);

type Fixed32s27 is delta 2.0**(-27) range -2.0**4 2.0%*4 - 2.0%*(-27)

type Fixed32s28 is delta 2.0**(-28) range -2.0**3 2.0%*3 - 2.0**(-28);

type Fixed32s29 is delta 2.0**(-29) range -2.0**2 2.0%*2 - 2.0**(-29)

type Fixed32s30 is delta 2.0**(-30) range -2.0**1 2.0**1 - 2.0**(-30);

type Fixed32s31 is delta 2.0**(-31) range -2.0**0 2.0%*0 - 2.0**(-31);

type Fixed32s32 is delta 2.0**(-32) range -2.0**(-1) 2.0**(-1) - 2.0**(-32)
type Fixed32s33 is delta 2.0**(-33) range -2.0**(-2) 2.0**(-2) - 2.0**(-33)
type Fixed32s34 is delta 2.0**(-34) range -2.0**(-3) 2.0**(-3) - 2.0**(-34)
type Fixed32s35 is delta 2.0**(-35) range -2.0**(-4) 2.0**(-4) - 2.0**(-35)
type Fixed32s36 is delta 2.0**(-36) range -2.0**(-5) 2.0**(-5) - 2.0**(-36)
type Fixed32s37 is delta 2.0**(-37) range -2.0**(-6) 2.0**(-6) - 2.0**(-37)
type Fixed32s38 is delta 2.0**(-38) range -2.0**(-7) 2.0**(-7) - 2.0**(-38)
type Fixed32s39 is delta 2.0**(-39) range -2.0**(-8) 2.0**(-8) - 2.0**(-39)
type Fixed32s40 is delta 2.0**(-40) range -2.0**(-9) 2.0**(-9) - 2.0**(-40)
type Fixed32s41 is delta 2.0**(-41) range -2.0**(-10) 2.0**(-10) - 2.0**(-41)
type Fixed32s42 is delta 2.0**(-42) range -2.0**(-11) 2.0**(-11) - 2.0**(-42)
type Fixed32s43 is delta 2.0**(-43) range -2.0**(-12) 2.0**(-12) - 2.0**(-43)
type Fixed32s44 is delta 2.0**(-44) range -2.0**(-13) 2.0**(-13) - 2.0**(-44)
type Fixed32s45 is delta 2.0**(-45) range -2.0**(-14) 2.0**(-14) - 2.0**(-45);
type Fixed32s46 is delta 2.0**(-46) range -2.0**(-15) 2.0**(-15) - 2.0**(-46)
type Fixed32s47 is delta 2.0**(-47) range -2.0**(-16) 2.0**(-16) - 2.0**(-47)
type Fixed32s48 is delta 2.0**(-48) range -2.0**(-17) 2.0**(-17) - 2.0**(-48)
type Fixed32s49 is delta 2.0**(-49) range -2.0**(-18) 2.0**(-18) - 2.0**(-49)
type Fixed32s50 is delta 2.0**(-50) range -2.0**(-19) 2.0**(-19) - 2.0**(-50)
type Fixed32s51 is delta 2.0**(-15) range -2.0**(-20) 2.0**(-20) - 2.0**(-51)
type Fixed32s52 is delta 2.0**(-52) range -2.0**(-21) 2.0**(-21) - 2.0**(-52)
type Fixed32s53 is delta 2.0**(-53) range -2.0**(-22) 2.0**(-22) - 2.0**(-53)
type Fixed32s54 is delta 2.0**(-54) range -2.0**(-23) 2.0**(-23) - 2.0**(-54)
type Fixed32s55 is delta 2.0**(-55) range -2.0**(-24) 2.0**(-24) - 2.0**(-55);
type Fixed32s56 is delta 2.0**(-56) range -2.0**(-25) 2.0**(-25) - 2.0**(-56)
type Fixed32s57 is delta 2.0**(-57) range -2.0**(-26) 2.0**(-26) - 2.0**(-57)
type Fixed32s58 is delta 2.0**(-58) range -2.0**(-27) 2.0**(-27) - 2.0**(-58)
type Fixed32s59 is delta 2.0**(-59) range -2.0**(-28) 2.0**(-28) - 2.0**(-59)
type Fixed32s60 is delta 2.0**(-60) range -2.0**(-29) 2.0**(-29) - 2.0**(-60)
type Fixed32s61 is delta 2.0**(-61) range -2.0**(-30) 2.0**(-30) - 2.0**(-61)
type Fixed32s62 is delta 2.0**(-62) range -2.0**(-31) .. 2.0**(-31) - 2.0**(-62)
type fixed32s63 is delta 2.0**(-63) range -2.0**(-32) .. 2.0**(-32) - 2.0**(-63)
type Fixed32s127 is delta 2.0**(-62) range -2.0**(-31) .. 2.0**(-31) - 2.0**(-62)

type Fixed33s3 is delta 2.0**(-3) range -2.0**(-1) .. 2.0**(-1) - 2.0**(-3);
type Fixed34s2 is delta 2.0**(-2) range -2.0**(-1) .. 2.0**(-1) - 2.0**(-2);
type Fixed34s32 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed36s3 is delta 2.0**(-3) range -2.0**(-1) .. 2.0**(-1) - 2.0**(-3);
type Fixed37s0 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed37s4 is delta 2.0**(-4) range -2.0**27 .. 2.0%**27 - 2.0**(-4);
type Fixed37s8 is delta 2.0**(-8) range -2.0**23 .. 2.0**23 - 2.0**(-8);
type Fixed37s10 is delta 2.0**(-10) range -2.0**21 .. 2.0**21 - 2.0**(-10)
type Fixed40s8 is delta 2.0**(-8) range -2.0**(-1) .. 2.0**(-1) - 2.0**(-8);
type Fixed44s12 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed48s32 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed49s50 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0);
type Fixed64s0 is delta 2.0**(-0) range -2.0**31 .. 2.0**31 - 2.0**(-0)
type Fixed64sl is delta 2.0**(-1) range -2.0**30 .. 2.0**30 - 2.0**(-1)
type Fixed64s2 is delta 2.0**(-2) range -2.0**29 .. 2.0**29 - 2.0**(-2)
type Fixed64s3 is delta 2.0**(-3) range -2.0**28 .. 2.0**28 - 2.0**(-3)
type Fixed64s4 is delta 2.0**(-4) range -2.0**27 .. 2.0*%*27 - 2.0**(-4)
type Fixed64s5 is delta 2.0**(-5) range -2.0**26 .. 2.0**26 - 2.0**(-5)
type Fixed64s6 is delta 2.0**(-6) range -2.0**25 .. 2.0**25 - 2.0**(-6)
type Fixed64s7 is delta 2.0**(-7) range -2.0**24 .. 2.0**24 - 2.0**(-7)

M -39

type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type
type

type

F
F
F
F
F
F
F
F
F
F
F
F
F
Fi
Fi
Fi

F
F
F
F
F
F
F

F
F
F
F
F
F
F
F
F
F
F
F
F
Fi
Fi
Fi
Fi

F
F
F
F
F
F
F
F

F

xed64s8
xed64s9
xed64s10
xed64s11
xed64s12
xed64s13
xed64s14
xed64s15
xed64s16
xed64s24
xed64s30
xed64s32
xed64s33
xed64s45
xed64s127
xed96s127

xed2ul
xed9u0
xed9u3
xedllu4d
xedl1lulo
xedl2ul0
xedl5ul?2 i

xed1l6u0
xedl6ul
xedl6u2
xedl6u3
xedl6u4d
xedl6u5
xedl6u6
xedl6u7
xedl6u8
xed1l6u9
xed1l6ul0
xedl6ull
xedl6ul2
xedl6ul3
xedl6uld
xedl6ul5
xedl6ul6

Ownmununununnnnnononnonononon

xed1l7u3

xed21lull
xed23ul0
xed25u8

xed30ul0
xed32u28
xed32u29

i
i
i
i
i
i
i
xed32u31l

nunnununnonon

xed33u32 is

-- end fixed point

delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta

Onmnnununununnnunonnnonoon

delta
delta
delta
delta
delta
delta
delta

delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta

delta
delta
delta
delta
delta
delta
delta
delta

delta
types

NNRODNNPDNNPNPDNNDNDNNNNNDNN NNDNNDNNN

NNDNNNNNDN

N

NESESESESESESESESESENENYNERISINS

. 0**(-8)
0**(-9)
0**(- 10)
0**(-11)
0**(-12)
0**(-13)
0** (- 14)
0**(- 15)
0**(- 16)
0**(-0)
0**(-0)
0**(-0)
0**(-0)
0**(-0)
0**(-0)
.0**(-0)

L0**(-1)
.0**(-0)
L0**(-3)
L0**(-4)
. 0**(-10)
. 0%*(-10)
L0%*(-12)

L0**(-0)
L0**(-1)
L0**(-2)
L0**(-3)
L0**(-4)
.0**(-5)
L0**(-6)
L0**(-7)
L0**(-8)
L0**(-9)
. 0**(-10)
L0%*(-11)
L0%*(-12)
L0%*(-13)
L0%*(-14)
. 0**(-15)
. 0%*(-16)

L0**(-3)
L0**(-11)
. 0**(-10)
L0**(-8)
. 0**(-10)
. 0%*(-28)
L 0%*(-29)
L0%*(-31)

L0%*(-31)

subtype Cnms2_Word is Integer

-- common vari abl es

First _lter: Bool ean

Sx1
Sx2
Sx3
Sx4
Sx5
Sx6
Sx7
Sx8

I nt eger
I nt eger
I nt eger
I nt eger
I nt eger
I nt eger
I nt eger
I nt eger

XNoghrONE

function "+"
(Left : in

Right : in

Fl oat ;
I nt eger)

return Float;
function "+"

range -

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

range
range
range
range
range
range
range

range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range
range

range
range
range
range
range
range
range
range

range

e

eoeooo0o

COOOOOOOO00000000

COoooo000o

2.0%*23 .. 2.0%*23 - 2.0**(-8);
S2.0%%22 .. 2.0%*22 - 2.0%*(-9)
©2.0%*21 .. 2.0%**21 - 2.0%*(-10);
©2.0%%20 .. 2.0%*20 - 2.0%*(-11);
©2.0%*10 .. 2.0%*19 - 2. 0%*(-12);
©2.0%**18 .. 2.0%**18 - 2.0**(-13);
S2.0%*17 .. 2.0%*17 - 2.0%*(-14);
©2.0%**16 .. 2.0%**16 - 2.0%**(-15);
©2.0**15 .. 2.0%**15 - 2.0**(-16);
©2.0%*31 .. 2.0%**31 - 2.0**(-0)
©2.0%**31 .. 2.0%*31 - 2.0**(-0)
©2.0%*31 .. 2.0%*31 - 2.0**(-0)
©2.0%**31 .. 2.0%**31 - 2.0**(-0)
©2.0%*31 .. 2.0%*31 - 2.0**(-0)
©2.0%**31 .. 2.0%*31 - 2.0**(-0)
©2.0%*31 .. 2.0%*31 - 2.0**(-0)

0 .. 2.0%*0 - 2.0%*(-1)

0 .. 2.0%**8 - 2.0%*(-0)

0 .. 2.0**5 - 2.0%*(-3)

0 .. 2.0%*6 - 2.0%*(-4)

0 .. 2.0**0 - 2.0**(-10);
0 .. 2.0**1 - 2.0%*(-10);
0 .. 2.0%*2 - 2.0%*(-12);
0 .. 2.0%**15 - 2.0%*(-0);
0 .. 2.0%**14 - 2.0%*(-1):
0 .. 2.0%**13 - 2.0%*(-2):
0 .. 2.0%*12 - 2.0%*(-3);
0 .. 2.0%*11 - 2.0%*(-4);
0 .. 2.0%**10 - 2.0%*(-5);
0 .. 2.0**9 - 2.0%*(-6)

0 .. 2.0%**8 - 2.0%*(-7)

0 .. 2.0%**7 - 2.0%*(-8)

0 .. 2.0%**6 - 2.0%*(-9)

0 .. 2.0**5 - 2.0%*(-10);
0 .. 2.0%*4 - 2.0%*(-11);
0 .. 2.0%**3 - 2.0%*(-12);
0 .. 2.0%*2 - 2.0%*(-13);
0 .. 2.0%*1 - 2.0%*(-14);
0 .. 2.0%**0 - 2.0%*(-15);
0 .. 2.0**(-1) - 2.0**(-16);
0 .. 2.0%**13 - 2.0%*(-3);
0 .. 2.0%**9 - 2.0%*(-11);
0 .. 2.0%**12 - 2.0%*(-10);
0 .. 2.0**16 - 2.0**(-8);
0 .. 2.0%**19 - 2.0%**(-10);
0 .. 2.0%**3 - 2.0%*(-28);
0 .. 2.0%*2 - 2.0%*(-29):
0 .. 2.0%**0 - 2.0%*(-31);
0 .. 2.0%*0 - 2.0%*(-31);

M -40

(Left : in I nt eger;
Right : in Fl oat)
return Float;
function "+"
(Left : in Bool ean;
Right : in I nt eger)
return Integer;
function "+"

(Left : in I nt eger;
Right : in Bool ean)
return Integer;
function "-"
(Left : in Fl oat ;
Right : in I nt eger)
return Float;
function "-"
(Left : in I nt eger;
Right : in Fl oat)
return Float;
function "-"
(Left : in Bool ean;
Right : in I nt eger)
return Integer;
function "-"
(Left : in I nt eger;
Right : in Bool ean)

return Integer;
function "*"
(Left : in Fl oat ;
Right : in I nt eger)
return Float;
function "*"
(Left : in I nt eger;
Right : in Fl oat)
return Float;
function "*"
(Left : in Bool ean;
Right : in I nt eger)
return Integer;
function "*"
(Left : in I nt eger;
Right : in Bool ean)
return Integer;
function "/"
(Left : in Fl oat ;
Right : in I nt eger)
return Float;
function "/"
(Left : in I nt eger;
Right : in Fl oat)
return Float;
function "<"
(Left : in Fl oat ;
Right : in I nt eger)
return Bool ean;
function "<"

(Left : in I nt eger;
Right : in Fl oat)
return Bool ean;
function "<="
(Left : in Fl oat ;
Right : in I nt eger)
return Bool ean;
function "<="
(Left : in I nt eger;
Right : in Fl oat)

return Bool ean;
function ">"
(Left : in Fl oat ;
Right : in I nt eger)
return Bool ean;
function ">"

(Left : in I nt eger;
Right : in Fl oat)
return Bool ean;
function ">="

M -41

(Left in Fl oat ;

Ri ght in I nt eger)

return Bool ean;
function ">="

(Left in I nt eger;

Ri ght in Fl oat)

return Bool ean;
function "and"

(Left in I nt eger;

Ri ght in Bool ean)

return Bool ean;
function "and"

(Left in Bool ean;

Ri ght in I nt eger)

return Bool ean;
function "or"

(Left in I nt eger;

Ri ght in Bool ean)

return Bool ean;
function "or"

(Left in Bool ean;

Ri ght in I nt eger)

return Bool ean;
function Pad

(Str in String;

Num : in I nt eger)

return String;
-- function asin2(a: float; b: float) return float;
-- function acos2(a: float; b: float) return float;
-- fixed point arithmetic functions
-- function isqgrt(a: float) return float; /* MEE
-- function hin (a: float) return float; /* MEE
-- function In (a: float) return float; /* MEE:
-- function iexp (a: float) return float; /* MEE
-- function isin (a: float) return float; /* MEE
-- function icos (a: float) return float; /* MEE
-- function bans (a: float) return float; /* MEE
-- function rad (a: float) return float; /* MEE
-- function sin(r: float) return float;
-- function cos(r: float) return float;
-- function tan(r: float) return float;
-- function log(r: float) return float;
-- pragma interface(fortran, sin);
-- pragma interface(fortran, cos);
-- pragma interface(fortran, tan);
-- pragma interface(fortran, |og);

function Long_Flt_Il mage
(R: in Long_Fl oat)
return String;

type Bit_String is array (Natural
pragnma Pack (Bit_String);

range <>) of Bool

subtype Bit_String_32 is Bit_String (O ..
subtype String4 is String (1 .. 4);

31);

function Space
(N: in I nt eger)
return String;

Conversion functions

function Bit_To_Integer
(Bs : in Bit_String)
return Integer;
function Integer_To_Bit
(N : in I nt eger;
No : in I nt eger)
return Bit_String;

M -42

/*
/*

09-11-94
09-11-94
09-11-94
09-11-94
09-11-94
09-11-94
09-11-94
09-11-94

ean,

M_EE:
M_EE:

09-11-94 */
09-11-94 */

*/
*/
*/
*/
*/
*/
*/
*/

--function char_to_bit(c: return
function Int_To_Bool

(N: in I nt eger)

return Bool ean;
--function int_to_bool (n:
function Int_To_Bool

(N: in Fl oat)

return Bool ean;
function Bool _To_Int

(P1: in Bool ean)

return Integer;
function Str_To_Int

(P1: in String)

return Integer;
function Int_To_Str

(P1: in I nt eger)

return String;

in string) bit_string;

in unsigned_| ongword) return bool ean;

procedure Field_H Proc_I nteger

(Vval ue in I nt eger;
Bstart in I nt eger;
Bl engt h in I nt eger;
Dest _Word : in out Cns2_Word);
procedure Field_H Proc_Fl oat
(Vval ue in Fl oat ;
Bstart in I nt eger;
Bl engt h :in I nt eger;
Dest _Word : in out Cns2_Word);
procedure Field_H Proc_String
(Vval ue in String;
Bstart in I nt eger;
Cl ength :in I nt eger;
Dest _Word : in out Cns2_Word);

function Field_H Fcn_I nteger

(Source_Word : in Crs2_Wor d;
Bstart in I nt eger;
Bl engt h in I nt eger)
return Integer;
function Field_H Fcn_Fl oat
(Source_Word : in Crs2_Wor d;
Bstart in I nt eger;
Bl engt h in I nt eger)
return Float;
function Field_H Fcn_String
(Source_Word : in Crs2_Wor d;
Bstart in I nt eger;
Cl ength in I nt eger)

return String;

procedure Meu_Tabl e_Word_Proc

(Val ue in I nt eger;
Size_Diml in I nt eger;
Si ze_Di nR in I nt eger;
Array_Addr in Addr ess) ;
procedure Meu_Tabl e_Word_Proc
(Val ue in Fl oat ;
Size_Diml in I nt eger;
Si ze_Di nR in I nt eger;
Array_Addr in Addr ess) ;
procedure Meu_Tabl e_Word_Proc
(Vval ue in String;
Size_Diml in I nt eger;
Si ze_Di nR in I nt eger;
Array_Addr in Addr ess) ;
procedure Miu_ltem Word_Proc
(Vval ue in I nt eger;
Size_Diml in I nt eger;
Array_Addr in Addr ess) ;
procedure Mlu_Iltem Word_Proc
(Val ue in Fl oat ;
Size_Diml in I nt eger;

M -43

Array_Addr : in Addr ess) ;

procedure Miu_Iltem Word_Proc

(Vval ue cin String;
Size Diml : in I nt eger;
Array_Addr : in Addr ess) ;

procedure Cns2_I nput

(File cin String;

For mat cin String;
Item Num: in I nt eger;
Item : out Integer);

procedure Cns2_I nput

(File cin String;
For mat cin String;
Item Num: in I nt eger;
Item : out Float);

procedure Cns2_I nput

(File cin String;
For mat cin String;
Item Num: in I nt eger;
Item : out String);

procedure Cns2_CQut put

(File cin String;
For mat cin String;
Item Num: in Integer :=1;
Item cin Integer := 0);

procedure Cnms2_CQut put

(File cin String;
For mat cin String;
Item Num: in I nt eger;
Item cin Fl oat);

procedure Cns2_CQut put

(File cin String;
For mat cin String;
Item Num: in I nt eger;
Item cin String);
procedure Assign_Char_Substring
(Dest cin String;
Charfrom: in I nt eger;
Charto cin I nt eger;
Srce cin String);
procedure Assign_Bit_Substring
(Dest cin Crs2_Wor d;
Charfrom: in I nt eger;
Charto cin I nt eger;
Srce cin I nteger);

procedure Swap_Data_Units
(Source cin I nt eger;
Receptacle : in I nteger);

procedure Shift_Data_Unit_Circul ar

(Source :in I nt eger;
Sanpunt :in I nt eger;
Recept acl e : out Integer);
procedure Shift_Data_Unit_Logical
(Source :in I nt eger;
Sanpunt :in I nt eger;
Recept acl e : out Integer);
procedure Shift_Data_Unit_Al gebraic
(Source :in I nt eger;
Sanpunt :in I nt eger;
Recept acl e : out Integer);

function Crs_2_QOddp
(Expr : in I nt eger)
return Bool ean;

function Crs_2_Evenp

(Expr : in I nt eger)

return Bool ean;
function Crs_2_Invalid

(Expr : in I nt eger)

return Bool ean;
function Crs_2_Valid

(Expr : in I nt eger)

return Bool ean;
-- MEE : 08 November 1994 : w Wi-hung for |Inplenentation Denp:
function Load_Ti ne_Func

(val : in I nt eger)

return Integer;
function Load_Ti ne_Func

(val : in Fl oat)

return Float;
function Load_Ti ne_Func

(val : in String)

return String;
-- MEE : 09 Novenber 1994 : Built-in function inplenmentation:
-- based on Wi-hung's summary.
-- Absolute val ue::
--function abs(signed_integer : in integer) return integer;
--function abs(signed_fl oat :in float) return float;
-- Bit string selection::
function Bit

(Data_Unit in Crs2_Wor d;

Starting_Bit_No : in I nt eger)

return Integer;

function Bit

(Data_Unit cin Crs2_Wor d;
Starting_Bit_No : in I nt eger;
No_Of _Bit cin I nt eger)

return Integer;

-- Character string selection::

function Char
(Data_Unit :in String;
Starting_Char_No : in I nt eger)
return String;

function Char

(Data_Unit :in String;
Starting_Char_No : in I nt eger;
No_Of _Chars :in I nt eger)
return String;
-- Bit count::
function Cnt
(Bit_Val : in Crs2_Wor d)

return Integer;

-- Menory address of a data unit::

function Corad
(Data_Unit : in Cns2_Wor d)
return Address;

-- Scaling::

function Scal f
(Scal e_Factor : in I nt eger)
return Cns2_Word;

function Scal f
(Scal e_Factor : in I nt eger;

Scal e_Val in Crs2_Wor d)

return Cns2_Word;

-- Data type conversion::

function Conf
(Type_Spec : in String)
return Cns2_Word;

function Conf
(Type_Spec cin String;

Convert_Val : in Crs2_Wor d)

return Cns2_Word;

M -45

-- Tenporary definition::

--function tdef(type_spec : in string) return integer;
--function tdef(type_spec : in string;
-- bit_str :ininteger) return integer;

function Tdef
(Type_Spec : in String)
return Integer;

function Tdef

(Type_Spec : in String;
Bit_Str :in I nt eger)
return Integer;
-- Remai nder: :
function Remmdr
(Operandl : in Fl oat)

return Float;
-- Subfile nunber::
function Fil

(File_Nane : in Cs2_Wor d)

return Integer;
-- Subfile position (record nunber of current subfile)::
function Pos

(File_Nane : in Cs2_Wor d)

return Integer;
-- Length of the current record in the naned file::
function Length

(File_Nane : in Cs2_Wor d)

return Integer;

-- Logical AND::
function Andf

(Operandl : in Crs2_Wor d;

Operand2 : in Crs2_Wor d)

return Cns2_Word;
-- function andf(operandl : in unsigned_| ongword;
-- operand2 : in unsigned_longword) return cns2_word;
-- Logical OR:
function O f

(Operandl : in Crs2_Wor d;

Operand2 : in Crs2_Wor d)

return Cns2_Word;

-- Logical XOR:

function Xorf
(Operandl : in Crs2_Wor d;
Operand2 : in Crs2_Wor d)

return Cns2_Word;
-- One's conplenmentation::
function Conpf
(Operand : in Crs2_Wor d)
return Cns2_Word;
-- Fixed point arithmetic function::
-- Square root::
function Isqrt
(Operand : in Fl oat)
return Float;
-- Hal f natural |ogarithm:
function Hn
(Operand : in Fl oat)
return Float;
-- Natural |ogarithm:
function Ln
(Operand : in Fl oat)
return Float;
-- Exponenti al : :
function Iexp
(Operand : in Fl oat)

M -46

return Float;
-- sine::
function Isin

(Operand : in Fl oat)

return Float;
-- cosi ne: :
function Icos

(Operand : in Fl oat)

return Float;

-- radi an to BAMS conversion::

function Bans

(Operand : in Fl oat)

return Float;

-- radi an to BAMS conversion::

function Rad

(Operand : in Fl oat)

return Float;

-- Float point arithmetic function::

return float;
return float;

float)
float)
float)
float)
float)
float)

in float) return float;

return
return
return
return
return
return

-- sine:: function sin (operand : in float)
-- cosine:: function cos (operand : in float)
-- tangent:: function tan (operand :
-- inverse sine:: function asin(operand : in
-- inverse cosine:: function acos(operand : in
-- inverse tangent:: function atan(operand : in
-- exponenti al :: function exp (operand : in
-- natual |ogarithm:function alog(operand : in
-- squart root:: function sqrt(operand : in
-- inverse sine::
function Asin2
(Operandl : in Fl oat ;
Operand2 : in Fl oat)
return Float;
-- i nverse consine::
function Acos2
(Operandl : in Fl oat ;
Operand2 : in Fl oat)
return Float;
-- i nverse tangent::
--function atan2(operandl : in float;
--operand2 : in float) return float;
-- Successor::
function Succ
(Operand : in I nt eger)
return Integer;
-- Successor::
function Pred
(Operand : in I nt eger)
return Integer;
-- Initial value::
function First
(Status_Type_Nanme : in String)
return Integer;
-- Final value::
function Final
(Status_Type_Nanme : in String)
return Integer;
-- Logical shift left/right::
function Shiftll
(shift_Vval : in Crs2_Wor d)
return Cns2_Word;
function Shiftlr
(shift_Val : in Crs2_Wor d)
return Cns2_Word;
-- Circular shift left/right::
function Shiftcl
(shift_Vval : in Crs2_Wor d)

return Cns2_Word;

M -47

float;
float;
float;
float;
float;
float;

function Shiftcr
(shift_Val : in Cs2_Wor d)
return Cns2_Word;

function Address_To_Integer is new Unchecked_Conversion
(Source => Address,
Target => Integer);

function Address_To_Unsigned i s new Unchecked_Conversi on
(Source => Address,
Target => Unsi gned_Longword);

procedure Cns2_Exec

(S_Num: in I nt eger);
procedure Cns2_Exec
(S_Num: in I nt eger;
Num : in Fl oat);

function Cnrs2_Data_lnit

(P1: in String;
P2 : in I nt eger;
P3 : in I nt eger;
P4 : in I nt eger)

return Cns2_Word;
function Crs2_Data_lnit

(P1: in I nt eger;
P2 : in I nt eger;
P3 : in I nt eger;
P4 : in I nt eger)

return Cns2_Word;
function Cnrs2_Data_lnit

(P1: in Fl oat ;

P2 : in I nt eger;
P3 : in I nt eger;
P4 : in I nt eger)

return Cns2_Word;

end Cms2_To_Ada_Predefi ned;

M -48

ADA REENGINEERING OF MK-2 CODE BY HAND

-- The purpose of this npdule is to update the Predicted Track Table to the
-- current tinme based on the observed position and speed of the track.

-- The original CMs-2 nodule perfornms this task for a single indexed entry,

-- with some external unit perform ng the update for the whole table. The

-- body of this package iterates over the entire table.

-- This nodul e requires another function to be responsible for updating the

-- Observed Track Table as well as the Owm Ship position.

-- Additional reengineering for better integration into the systemis desirable.
wi t h Ada. Cal endar; use Ada. Cal endar;

wi th Ada. Numerics; use Ada. Nunerics;

package MK2 is

MK2_Tabl e_Si ze: Constant := 99; -- allows easy increase of size for track tables
type MK2_Fl oat _Type is new Float; -- allow to be inplenentation defined
subtype Distance_Type is MK2_Fl oat _Type; -- Distance in yards
subtype Velocity_Type is MK2_Fl oat _Type; -- in yards/second
subtype Radi ans_Type is MK2_Fl oat _Type; -- in radi ans;
subtype Latitude_Type is MK2_Fl oat_Type range -Pi/2.0.. Pi/2.0; -- in radians
subtype Longitude_Type is MK2_Fl oat_Type range -Pi .. Pi; -- in radians
Omn_Shi p_X Posi tion: Di st ance_Type = 0.0;
Omn_Shi p_Y_Posi tion: Di st ance_Type = 0.0;
Omn_Shi p_Lati t ude: Latitude_Type = +32.0 * Pi/180.0;
Omn_Shi p_Longi t ude: Longi tude_Type : = -120.0 * Pi/180.0;
type Observed_Track_Table is
record

Ti me_of _Last _Update: Ada. Cal endar. Ti ne;

X: Di stance_Type; -- Observed X position

Y: Di stance_Type; -- Observed Y position

X Vel ocity: Vel ocity_Type; -- Observed X conponent of velocity

Y_Vel ocity: Vel ocity_Type; -- Cbserved Y conponent of velocity

end record;

type Predicted_Track_Table is

record
X: Di stance_Type; -- Predicted X position
Y: Di stance_Type; -- Predicted Y position
Rng: Di stance_Type; -- Predicted Range from Om Ship
Brg: Radi ans_Type; -- Predicted Bearing from Om Ship
Lati t ude: Latitude_Type; -- Predicted Latitude
Longi t ude: Longi tude_Type;-- Predicted Longitude
end record,
Observed_Track: array (0 .. MK2_Tabl e_Size) of Observed_Track_Tabl e;
Predi ct ed_Track: array (0 .. MK2_Tabl e_Size) of Predicted_Track_Tabl e;
procedure Conpute_Track_Lat_Lng
(Rng in Di st ance_Type;
Brg in Radi ans_Type;
Lat in Latitude_Type;
Lng in Longi t ude_Type;
Conput ed_Lat i t ude : out Latitude_Type;
Conput ed_Longi t ude : out Longi t ude_Type);
procedure Conpute_Beari ng_Range
(X1 in Di st ance_Type;
Y1l in Di st ance_Type;
X2 in Di st ance_Type;
Y2 in Di st ance_Type;
Rng : out Di st ance_Type;
Brg : out Radi ans_Type) ;

procedure Predict_Track_Position

M -49

(ad_X in Di st ance_Type;
ad.y in Di st ance_Type;
X_ Vel ocity in Vel ocity_Type;
Y_Vel ocity in Vel ocity_Type;
Tinme_of _O d_Position : in Ada. Cal endar . Ti ne;
New_X : out Di st ance_Type;
New_Y : out Di st ance_Type);

end MK2;

wi th Ada. Nunerics. Generi c_El ementary_Functi ons;
package body MK2 is

package MK2_Nunerics is new Ada. Numeri cs. Generi c_El ementary_Functi ons
(Fl oat _Type => MK2_Fl oat _Type);
use MK2_Nunerics;

procedure Predict_Track_Position

(ad_X in Di st ance_Type;
ad.y in Di st ance_Type;
X Vel ocity in Vel ocity_Type;
Y_Vel ocity in Vel ocity_Type;
Time_of _A d_Position in Ada. Cal endar . Ti ne;
New_X : out Di st ance_Type;
New_Y : out Di stance_Type) is

-- The Predict_Track_Position procedure will conmpute a predicted X and Y position
-- to the current tinme based on the old position and the tine of observation for
-- the old position.

Del ta_Ti me: Dur ati on;

begin
-- Compute Fire Control Predicted Track X and Y Positions
Delta_Time := Ada. Cal endar.C ock - Time_of _O d_Position;
-- Note: Not only handles tine across days, but also handl es Y200 problem
-- Type Duration is inplenmentation defined; possible exception if too |large
-- Assune Delta_Tine nominally less than 24 hours?
New X := A d_X + X Velocity * MK2_Fl oat _Type(Delta_Tine);

New Y := A d_Y + Y_Velocity * MK2_Fl oat _Type(Delta_Ti ne);

end Predict_Track_Position;

procedure Conpute_Beari ng_Range

(X1 in Di st ance_Type;
Y1l in Di st ance_Type;
X2 in Di st ance_Type;
Y2 in Di st ance_Type;
Rng : out Di st ance_Type;
Brg : out Radi ans_Type) is

-- procedure Conpute_Bearing_Range conputes the bearing and range from an
-- input position (X1, Y1) to the input position (X2, Y2).

begin

-- Conpute Fire Control System Position Kept Track Range
Rng := Sgrt ((X2-X1)**2 + (Y2-Y1)**2);
If (Rng > 999999.0) then
Rng : = 999999. 0; -- Cip Track range to Maxi nun??????2??

end if;

-- Conpute Fire Control System Position Kept Track Bearing

I'f (Abs(X2-X1) < 0.00001) and (Abs(Y2-Y1l) < 0.00001) then
-- Possible error in original CM5 - should use Abs furction
Brg := 0.0;

el se
Brg := Arctan ((Y2-Y1l), (X2-X1));

end if;

end Conput e_Beari ng_Range;

procedure Conpute_Track_Lat
(Rng
Brg
Lat
Lng

Conput ed_Lat i t ude
Conput ed_Longi t ude

| atitude/l

Al gorithm =>

Latitude

Eart h_Radi us:
Thet a:
Argl, Arg2:

begin

Thet a
Conput ed_Lat i t ude

Argl
Arg2

_Lng

The Conpute_Track_Lat _Lng procedure will
coordi nates of a position represented by a range,
ongi tude position.

constant Distance_Type : =
Radi ans_Type;
MK2_Fl oat _Type;

in Di st ance_Type;
in Radi ans_Type;
in Latitude_Type;
in Longi t ude_Type;

: out Lat i tude_Type;
out Longi tude_Type) is
calculate the latitude and | ongitude
bearimg fromthe input

Theta = Range / Earth_Radi us
= Arcsin [Sl n(Lat)*Cos(Theta) + Cos(Lat)*Si n(Theta)*Cos(Brg)]
Longi tude = Arctan [sin(Theta)*Sin(Brg),

Cos(Lat)*Si n(Theta) -

Sin(Lat)*Si n(Theta)*Cos(Brg)] - Lng;

6_975_563.33; -- in yards

Radi ans_Type(Rng / Earth_Radi us);
Arcsin (Sin(Lat)*Cos(Theta) +
Cos(Lat)*Si n(Theta) *Cos(Brg));
Si n(Theta)*Si n(Brg);
Cos(Lat)*Si n(Theta)-Si n(Lat)*Si n(Theta)*Cos(Brg);

If (abs(Argl) < 0. 00001) and (abs(Arg2) < 0.00001) then

-- Again possible error
Conput ed_Longi t ude

el se

Conput ed_Longi tude : =

end if;

If (Conputed_Longitude > Pi) then
Conput ed_Longi t ude

end if;
Not e: tangenti al
end Conpute_Track_Lat _Lng;

begin -- package M2

Assumes table for

Then conpute table for
Actually in CM5-2 code,

for |

Predi ct_Track_Position

in original

functions may raise constraint

in Predicted_Track' range | oop --

not
Lng;

usi ng abs function
:=0.0 -

Arctan (Arg2, Argl) - Lng;

to Pi.

Bound | ongi tude from - Pi
:= Conput ed_Longi tude - 2.0*Pi;

_error see RMA 5.1

Observed_Track is full
Predi cted_Track

some external
There is probably a mechanismto ignore null

driver causes the looping for each index
Tracks in the table

Oiginal CMs-2 perfornms this for one | ndex

Conput e Predicted Track Position

(ad_X => Cbserved_Track(l). X,
ad.y => Cbserved_Track(l).Y,
X Vel ocity => (Cbserved_Track(l).X Vel ocity,
Y_Vel ocity => (Cbserved_Track(l).Y_Velocity,
Time_of _A d_Position => Observed_Track(l).Time_Of _Last_Update,
New_X => Predicted_Track(l). X,
New_Y => Predicted_Track(l).Y);

Conput e_Beari ng_Range
(X1

Conput e_Track_Lat
(Rng
Brg

_Lng

Conput e predicted range and bearing fromown ship's position

=> Omn_Shi p_X Posi tion,

=> Omn_Shi p_Y_Posi tion,

=> Predi cted_Track(l). X

=> Predi cted_Track(l).Y,

=> Predi cted_Track(!).Rng,
=> Predicted_Track(l).Brg);

Conpute Predicted Track Latitude and Longitude

=> Predicted_Track(!l). Rng,
=> Predicted_Track(l).Brg,

M -52

Lat => Om_Shi p_Lati tude,

Lng => Oan_Shi p_Longi t ude,
Conput ed_Lat it ude => Predicted_Track(l).Latitude,
Conput ed_Longi t ude => Predicted_Track(l).Longitude);

end | oop;
end MK2;

Mappi ng of CMS-2 nanmes to Ada 95 nanes

1. ldentifiers
COSBRG intermedi ate not used
COSLAT1 intermedi ate not used
COSTHET intermedi ate not used
FKPI becones Pi [Ada. Nunerics. Pi]
FKPI 2 becones 2*Pi; conpiler will optimze
FTCONDAT becones Earth_Radi us
Apparently constant maintained in a table of CM5-2 constants
CCCC transl ator converts to (array 0..98, 0..0) of CMS2_Word
FTCSS becomes Track
FTPKSS becones Predicted_Track
FVBRG becones Bearing in Predicted_Track
FVEQRADG becones Earth_Radi us
FVRNG becones Rng in Predicted_Track
FVTGTLAT becones Latitude in Predicted_Track
FVTGTLON becones Longi tude in Predicted_Track
FVTI ME becones Time_of _Last_Update in Observed_Track
FVTXP 1 becones X in Cbserved_Track
FVTXP 2 becones X in Predicted_Track
FVTXV becones X Vel ocity in Observed_Track
FVTYP 1 becones Y in Cbserved_Track
FVTYP 2 becones Y in Predicted_Track
FVTYV becones Y_Velocity in Observed_Track
I CNX becones |
RBLLTHET becomes Theta
S| NBRG intermedi ate not used
SI NLAT1 intermedi ate not used
S| NTHET intermedi ate not used
SUDVBRG becones Brg
SUDVLAT1 becomes Lat
SUDVLAT?2 becones Conputed_Latitude
SUDVLON1 becones Lng
SUDVLON2 becones Conput ed_| ongi t ude
SUDVRNG becones Rng
SUDVDTME becones Delta_Ti me
SUDVOSLT becones Oan_Shi p_Latitude
SUDVOSLN becones Oan_Shi p_Longi t ude
SUDVOSXP becones Oan_Shi p_X Position
SUDVOSYP becones Oamn_Shi p_Y_Position
SUDVRAD1 becones null (an internedi ate conputation)
SUDVRAD2 becones null (an internediate conputation)
SUDVTI ME becomes comes the function Ada. Cal endar. Cl ock
TEMPARG intermedi ate not used
TGTLAT intermedi ate not used
TGTLONG intermedi ate not used
VRAD1 becones null (an internediate conputation)
VRAD2 becones null (an internediate conputation)
2. Procedures
SUDPATAN not needed as converted to sinple if then else test
SUDPKFCS becones Predict_Track_Position and Conpute_Bearing_Range
SUDPRBLL becones Conpute_Track_Lat _Lng

3. CMS5-2 Math functions provided by Ada 95 Package MK2_Numerics generic
Ada. Nunerics defines Pi, e,
Chi |l d package defines

Sqrt, Log, Exp, **,

Sin, Cos, Tan, Cot,

Arcsin, Arccos, Arctan, Arccot

Si gh, Cosh, Tanh, Coth

Arcsign, Arccosh, Arctanh, Cot

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

2. REPORT DATE

September 1997

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED

Final: 30 June 1997

4. TITLE AND SUBTITLE

CMS-2 TO ADA TRANSLATOR EVALUATION FINAL REPORT

6. AUTHOR(S)
NRaD: Ron Iwamiya, Hans Mumm, Bob Ollerton, Bryan Riegle

SPAWAR: Currie Colket

5. FUNDING NUMBERS

PE: 0602234N
AN: DNO088690
WU: ECB3

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division (NRaD)

San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

TD 2984

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22219-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The objective of this evaluation was to determine the maturity of the CMS-2 to Ada translators and associ
tools, to determine the capabilities of these translators, and to provide information to CMS—2 project managqrs to
assist them in the evaluation of costs and risks of translating CMS-2 to Ada.

hted

14. SUBJECT TERMS
Mission Area: Command, Control, and Communications

software metrics Ada translators
source code analysis

15. NUMBER OF PAGES

16. PRICE CODE

18. SECURITY CLASSIFICATION
OF THIS PAGE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

NSN 7540-01-280-5500

Standard form 298 (FRONT)

